Abstract

This paper presents a developed method to calculate the parameters for thirty-three squirrel cage induction motors operating at three-phase ac voltage of 380 volts. These motors are the total product of an Egyptian factory holding a license from SIEMENS international company to fabricate all parts of these motors. The parameters of all mentioned motors are computed based on the proposed method. Then, the performance characteristics of these motors are investigated at full-load using the conventional equivalent circuit in order to validate the proposed method. The obtained curves achieve significant convergence with the full-load values provided by the data sheets of investigated motors. This confirms the validity of the proposed method.

Keywords

Induction motors, Equivalent circuit parameters, SIEMENS,

Downloads

Download data is not yet available.

References

  1. X.W.W. Huang, X. Lin, W. Jiang, Y. Zhao, S. Zhu, Direct torque control for induction motors based on minimum voltage vector error, IEEE Transactions on Industrial Electronics, 68 (2021) 3794–3804.
  2. S.R. Eftekhari, S.A. Davari, P. Naderi, C. Garcia, J. Rodriguez, Robust loss minimization for predictive direct torque and flux control of an induction motor with electrical circuit model, IEEE Transactions on Power Electronics, 35 (2020) 5417–5426.
  3. B.R. Vinod, G. Shiny, Direct torque control scheme for a four-level-inverter fed open-end-winding induction motor, IEEE Transactions on Energy Conversion, 34 (20190) 2209–2217.
  4. R. Rai, S. Shukla, B. Singh, Sensorless field oriented SMCC based integral sliding mode for solar PV based induction motor drive for water pumping, IEEE Transactions on Industry Applications, 56 (2020) 5056–5064.
  5. J.R. Dom´ınguez, I. Duenas, S. Ortega–Cisneros, Discrete-time modeling and control based on field orientation for induction motors, IEEE Transactions on Power Electronics, 35 (2020) 8779–8793.
  6. M.J. Cheerangal, A.K. Jain, A. Das, Control of rotor field-oriented induction motor drive during input supply voltage sag, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9 (2021) 2789–2796.
  7. M. Carraro, M. Zigliotto, Automatic parameter identification of inverter-fed induction motors at standstill, IEEE Transactions on Industrial Electronics, 61 (2014) 4605–4613.
  8. K. Yamazaki, A. Suzuki, M. Ohto, T. Takakura, Circuit parameters determination involving stray load loss and harmonic torques for high-speed induction motors fed by inverters, IEEE Transactions on Energy Conversion, 28 (2013) 154–163.
  9. J. Xiaochun, Y. Geng, W. yunfei, A parameter identification method for general inverter-fed induction motor drive, International Conference on Power Electronics and Motion Control, Shanghai, China, (2006) 1-5.
  10. C.A.C. Wengerkievicz, R.A. Elias, N.J. Batistela, N. Sadowski, P. Kuo-Peng, S. C. Lima, P. A. da Silva Jr., A. Y. Beltrame, Estimation of three-phase induction motor equivalent circuit parameters from manufacturer catalog data, Journal of Microwaves Optoelectronics and Electromagnetic Applications, 16 (2017) 90–107.
  11. S.C. Lima, C.A.C. Wengerkievicz, N.J. Batistela, N. Sadowski, P.A. da Silva Jr, A.Y. Beltrame, Induction motor parameter estimation from manufacturer data using genetic algorithms and heuristic relationships, International Conference Power Electronics, Juiz de Fora, Brazil, (2017) 1–6.
  12. S.C. Sabharwal, Methodology for estimating performance characteristics of three phase induction motor operating direct-on-line or with six pulse inverter, International Conference on Power Electronic Drives and Energy Systems, New Delhi, India, (2006) 1–4.
  13. G.F.V. Amaral, J.M.R. Baccarini, F.C.R. Coelho, L.M. Rabelo, A high precision method for induction machine parameters estimation from manufacturer data, IEEE Transactions on Energy Conversion, 36 (2021) 1226–1233.
  14. M.H. Haque, Determination of NEMA design induction motor parameters from manufacturer data, IEEE Transactions on Energy Conversion, 23 (2008) 997–1004.
  15. A.R. Helonde, M. Mankar, Identifying three phase induction motor equivalent circuit parameters from nameplate data by different analytical methods, International Journal of Trend in Scientific Research and Development, 3 (2019) 642–645.
  16. Z. Ling, L. Zhou, S. Guo, Y. Zhang, Equivalent circuit parameters calculation of induction motor by finite element analysis, IEEE Transactions on Magnetics, 50 (2014) 833–836.
  17. J. Faiz, M.B.B. Sharifian, M.R. Feyzi, K. Shaarbafi, A complete lumped equivalent circuit of three-phase squirrel-cage induction motors using two-dimensional finite-elements technique, IEEE Transactions on Energy Conversion, 17 (2002) 363–367.
  18. A. Boglietti, A. Cavagnino, M. Lazzari, Computational algorithms for induction-Motor equivalent circuit parameter determination—part I: resistances and leakage reactances, IEEE Transactions on Industrial Electronics, 58 (2011) 3723–3733.
  19. A. Boglietti, A. Cavagnino, M. Lazzari, Computational algorithms for induction-Motor equivalent circuit parameter determination— part II: skin effect and magnetizing characteristics, IEEE Transactions on Industrial Electronics, 58 (2011) 3734–3740.
  20. M. Wlas, Z. Krzeminski, H.A. Toliyat, Neural-network-based parameter estimations of induction motors, IEEE Transactions on Industrial Electronics, 55 (2008) 1783–1794.
  21. D. Bhowmick, M. Manna, S.K. Chowdhury, Estimation of equivalent circuit parameters of transformer and induction motor from load data, IEEE Transactions on Industry Applications, 54 (2018) 2784–2791.
  22. L. Shanshan, Z. Ninghui, W. Biao, F. Yunji, On-line parameter identification of a squirrel cage induction motor, Journal of Physics: Conference Series, 1302 (2019) 1–7.
  23. Grantham, D.J. McKinnon, Rapid parameter determination for induction motor analysis and control, IEEE Transactions on Industry Applications, 39 (2003) 1014 - 1020.