Abstract

Heusler alloys have unusual properties, making them highly interesting for evaluation. This study focuses on the double half-Heusler Mn2CoFeGe2, analyzing its crystal structure and magnetic properties. The prepared alloy was analysed through X-ray diffraction to study its structural features. The material’s morphology was examined using scanning electron microscopy. Simultaneously, the elemental constituent proportions of Mn2CoFeGe2 were confirmed using energy-dispersive X-ray spectroscopy (EDS) analysis, which verifies that the elements are present in a 2:1:1:2 atomic ratio. Interestingly, the saturation magnetization slightly decreases from 60 emu/g at 5 K to 57 emu/g at 150 K. The measured g-value of the alloy is greater than 2. The Mn2CoFeGe2 alloy behaves like a semiconductor based on UV measurements. Therefore, the use of this alloy in the new technologies seems reasonable.

Keywords

Double half-Heusler alloy, Mn2CoFeGe2, Magnetic properties, Electron Spin Resonance, Raman spectroscopy,

Downloads

Download data is not yet available.

References

  1. S. Tavares, K. Yang, M.A. Meyers, Heusler alloys: Past, properties, new alloys, and prospects. Progress in Materials Science, 132, (2023) 101017. https://doi.org/10.1016/j.pmatsci.2022.101017
  2. Y. El Krimi, R. Masrour, Cobalt-based full Heusler compounds Co2FeZ (Z = Al, Si, and Ga): A comprehensive study of competition between XA and L21atomic ordering with ab initio calculation. Materials Science and Engineering: B, 284, (2022) 115906. https://doi.org/10.1016/j.mseb.2022.115906
  3. M.Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K.J.S.S.C. Bouslykhane, Effect of L21 and XA ordering on structural, martensitic, electronic, magnetic, elastic, thermal and thermoelectric properties of Co2FeGe Heusler alloys. Solid State Communications, 355, (2022) 114932. https://doi.org/10.1016/j.ssc.2022.114932
  4. S.S. Essaoud, A.S. Jbara, First-principles calculation of magnetic, structural, dynamic, electronic, elastic, thermodynamic and thermoelectric properties of Co2ZrZ (Z = Al, Si) Heusler alloys. Journal of Magnetism and Magnetic Materials, 531, (2021) 167984. https://doi.org/10.1016/j.jmmm.2021.167984
  5. A. Telfah, S. Sâad Essaoud, H. Baaziz, Z. Charifi, A.M. Alsaad, M.J.A. Ahmad, R. Hergenröder, R. Sabirianov, Density Functional Theory Investigation of Physical Properties of KCrZ (Z = S, Se, Te) Half‐Heusler Alloys. Physica Status Solidi (b), 258(10), (2021) 2100039. https://doi.org/10.1002/pssb.202100039
  6. M.Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, Diluted effect on the structural, magnetic, electronic, thermodynamic, optical and thermoelectric properties of the Heusler alloys Co2Fe1−xTixGa: GGA and GGA + U Approaches. Optical and Quantum Electronics, 55(2), (2023) 140. https://doi.org/10.1007/s11082-022-04348-6
  7. A. Ezaier, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, First principal study of structural, electronic, magnetic, thermodynamic, optical and thermoelectric properties of Nd(Co 1-x Fex)2 (x=0 to 1). Journal of Physics and Chemistry of Solids, 176, (2023) 111194. https://doi.org/10.1016/j.jpcs.2022.111194
  8. I.A. Elkoua, R. Masrour, Structural, thermodynamics, optical, electronic, magnetic and thermoelectric properties of Heusler Ni2MnGa: An ab initio calculations. Optical and Quantum Electronics, 54(10), (2022) 667. https://doi.org/10.1007/s11082-022-03999-9
  9. M.L. Belkhir, A. Gueddouh, F. Faid, M. Rougab, The Structural, Electronic, Magnetic, Mechanical, and Lattice Dynamical Properties of the Novel Full-Heusler Alloys Mn2HfX (X = Si and Ge): Ab Initio Study. Journal of Superconductivity and Novel Magnetism, 36(1), (2023) 131–146. https://doi.org/10.1007/s10948-022-06431-1
  10. P.Y. Huang, Z.G. Zheng, S. Da, Z.G. Qiu, G. Wang, D.C. Zeng, Large magnetocaloric effect and negative thermal expansion of Mn-Ni-Si-Fe-Co-Ge high-entropy alloys. Journal of Alloys and Compounds, 1007, (2024) 176394. https://doi.org/10.1016/j.jallcom.2024.176394
  11. M. Kratochvílová, D. Král, M. Dušek, J. Valenta, R.H. Colman, O. Heczko, M. Veis, Fe2MnSn - Experimental quest for predicted Heusler alloy. Journal of Magnetism and Magnetic Materials, 501, (2020) 166426. https://doi.org/10.1016/j.jmmm.2020.166426
  12. S. Fabbrici, F. Cugini, F. Orlandi, N.S. Amadè, F. Casoli, D. Calestani, R. Cabassi, G. Cavazzini, L. Righi, M. Solzi, F. Albertini, Magnetocaloric properties at the austenitic Curie transition in Cu and Fe substituted Ni-Mn-In Heusler compounds. Journal of Alloys and Compounds, 899, (2022) 163249. https://doi.org/10.1016/j.jallcom.2021.163249
  13. F. Cugini, S. Chicco, F. Orlandi, G. Allodi, P. Bonfá, V. Vezzoni, O.N. Miroshkina, M.E. Gruner, L. Righi, S. Fabbrici, F. Albertini, Effective decoupling of ferromagnetic sublattices by frustration in Heusler alloys. Physical Review B, 105(17), (2022) 174434. https://doi.org/10.1103/PhysRevB.105.174434
  14. A. Cheriet, K. Boudia, R. Hamdi, F. Sofrani, F. Khelfaoui, Computational characterization of structural, electronic, elastic and magnetic properties of double half-Heusler alloy Fe2MnCoGe2. Studies in Engineering and Exact Sciences, 5(2), (2024) e11737. https://doi.org/10.54021/seesv5n2-673
  15. C.H. Tsau, M.C. Tsai, W.L. Wang, Microstructures of FeCoNiMo and CrFeCoNiMo Alloys, and the Corrosion Properties in 1 M Nitric Acid and 1 M Sodium Chloride Solutions. Materials, 15(3), (2022) 888. https://doi.org/10.3390/ma15030888
  16. G. Vazquez, S. Chakravarty, R. Gurrola, R. Arróyave, A deep neural network regressor for phase constitution estimation in the high entropy alloy system Al-Co-Cr-Fe-Mn-Nb-Ni. npj Computational Materials, 9(1), (2023) 68. https://doi.org/10.1038/s41524-023-01021-8
  17. S. Anand, M. Wood, Y. Xia, C. Wolverton, G.J. Snyder, Double Half-Heuslers. Joule, 3(5), (2019) 1226–1238. https://doi.org/10.1016/j.joule.2019.04.003
  18. B. Balke, S. Wurmehl, G.H. Fecher, C. Felser, M. Alves, F. Bernardi, J. Morais, Structural characterization of the Co2FeZ (Z=Al, Si, Ga, and Ge) Heusler compounds by x-ray diffraction and extended x-ray absorption fine structure spectroscopy. Applied Physics Letters, 90(17), (2007) 172501. https://doi.org/10.1063/1.2731314
  19. Y. Zhang, J. Sung, Y. Yin, Y.Y. Chang, N.V. Medhekar, S. Granville, H.S. Hsu, Giant temperature-independent ultraviolet circular dichroism in Co2Mn X ( X = Ga,Ge ) Heusler magnetic thin films. Physical Review Applied, 24(3), (2025) 034052. https://doi.org/10.1103/h822-rw47
  20. V. Alijani, S. Ouardi, G.H. Fecher, J. Winterlik, S.S. Naghavi, X. Kozina, G. Stryganyuk, C. Felser, E. Ikenaga, Y. Yamashita, S. Ueda, Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMn Z ( Z = Al , Ga, Si, Ge). Physical Review Applied, 84(22), (2011) 224416. https://doi.org/10.1103/PhysRevB.84.224416
  21. P. Klaer, B. Balke, V. Alijani, J. Winterlik, G.H. Fecher, C. Felser, H.J. Elmers, Element-specific magnetic moments and spin-resolved density of states in CoFeMn Z ( Z = Al , Ga; Si, Ge). Physical Review B, 84(14), (2011) 144413. https://doi.org/10.1103/PhysRevB.84.144413
  22. H.A. Masri, M.S. Abu-Jafar, N.F.A. Mohammad, S.S. Essaoud, Extensive DFT study of FeMnCrGe quaternary Heusler alloy: structural, elastic, magnetic, optical and thermoelectric properties. Optical and Quantum Electronics, 57(2), (2025) 139. https://doi.org/10.1007/s11082-024-08029-4
  23. K. Berarma, S.S. Essaoud, A.A. Mousa, S.M. Azar, A.Y. Al-Reyahi, Opto-electronic, thermodynamic and charge carriers transport properties of Ta2 FeNiSn2 and Nb2 FeNiSn2 double half-Heusler alloys. Semiconductor Science and Technology, 37(5), (2022) 055013. https://doi.org/10.1088/1361-6641/ac612b
  24. E. Yüzüak, I. Dincer, Y. Elerman, I. Dumkow, B. Heger, S. Yuce Emre, Enhancement of magnetocaloric effect in CoMn 0.9Fe0.1 Ge alloy. Journal of Alloys and Compounds, 641, (2015) 69–73. https://doi.org/10.1016/j.jallcom.2015.04.062
  25. X.Y. Wang, M. Li, Z.X. Wen, The Effect of the Cooling Rates on the Microstructure and High-Temperature Mechanical Properties of a Nickel-Based Single Crystal Superalloy. Materials, 13(19), (2020) 4256. https://doi.org/10.3390/ma13194256
  26. S. Ghosh, A. Nozariasbmarz, H. Lee, L. Raman, S. Sharma, R.B. Smriti, D. Mandal, Y. Zhang, S.K. Karan, N. Liu, J.L. Gray, High-entropy-driven half-Heusler alloys boost thermoelectric performance. Joule, 8(12), (2024) 3303–3312. https://doi.org/10.1016/j.joule.2024.08.008
  27. S.S. Beenaben, R. Sankararajan, S. Manickam, K. KlintonBrito, M. Prasath, MnNiSi Half-Heusler Alloy: Computational and experimental insights for energy harvesting and spintronic applications. Chemical Physics Impact, 10, (2025) 100891. https://doi.org/10.1016/j.chphi.2025.100891
  28. S. Saad Essaoud, S. Al Azar, A.A. Mousa, A.Y. Al-Reyahi, N. Al Aqtash, M.E. Ketfi, Insight into physical properties of lutetium-based double half-Heusler alloys LuXCo2Bi2 (X = V, Nb and Ta). Journal of Rare Earths, 43(1), (2025) 199–208. https://doi.org/10.1016/j.jre.2023.11.011
  29. C.O. Dias, J.R.D.M. Monteiro, L.S.D. Oliveira, P. Chaudhuri, S.M.D. Souza, D.M. Trichês, Combined Experimental and First Principles Study on Nanostructured NbFeSb Half-Heusler Alloy Synthesized by Mechanical Alloying. Materials Research, 26, (2023) e20220295. https://doi.org/10.1590/1980-5373-MR-2022-0295
  30. N.S. Soltanbek, N. Merali, N.E. Sagatov, F.U. Abuova, E. Elsts, A.U. Abuova, V. Khovaylo, T. Inerbaev, M. Konuhova, A.I. Popov, Ab Initio Investigation of the Stability, Electronic, Mechanical, and Transport Properties of New Double Half Heusler Alloys Ti2Pt2ZSb (Z = Al, Ga, In). Metals, 15(3), (2025) 329. https://doi.org/10.3390/met15030329
  31. S.A. Khandy, I. Islam, D.C. Gupta, R. Khenata, A. Laref, Lattice dynamics, mechanical stability and electronic structure of Fe-based Heusler semiconductors. Scientific reports, 9(1), (2019) 1475. https://doi.org/10.1038/s41598-018-37740-y
  32. R. Boya, V. Yenugonda, E. Purushotham, J. Casey, S.K. Adpa, M. Chandra Sekhar, G. Nataraju, S.S. Samatham, A.K. Pathak, Weak first-order phase transition, exchange bias effect, and T − H phase diagram of Mn 0.75Fe0.25 NiGe. Physical Review Materials, 8(11), (2024) 114411. https://doi.org/10.1103/PhysRevMaterials.8.114411
  33. J. Sharma, A.A. Coelho, K.G. Suresh, A. Alam, Martensitic and room-temperature magnetocaloric properties of Mn-rich Mn-Ni-Sn Heusler alloys: Experiment and theory. Physical Review B, 109(6), (2024) 064418. https://doi.org/10.1103/PhysRevB.109.064418
  34. A. Aryal, I. Dubenko, J. Zamora, J.S. Llamazares, C.F. Sánchez-Valdés, D. Mazumdar, S. Talapatra, S. Stadler, N. Ali, Synthesis, structural, and magnetic properties of Heusler-type Mn2-xFe1+xGe (0.0 ≤ x ≤ 1.0) alloys. Journal of Magnetism and Magnetic Materials, 538, (2021) 168307. https://doi.org/10.1016/j.jmmm.2021.168307
  35. N. Tiwari, S. Mishra, S. Sarkar, S. Talapatra, M. Palit, M. Paliwal, A.K. Singh, C.S. Tiwary, Magnetocaloric effect in Mn-rich Heusler-derived alloys for room temperature-based applications. Journal of Materials Chemistry C, 13(21), (2005) 10789–10803. https://doi.org/10.1039/D4TC04242E
  36. X. Cao, L. Gu, Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties. Nanotechnology, 16(2), (2005) 180.https://doi.org/10.1088/0957-4484/16/2/002
  37. Ł. Dubiel, B. Cieniek, W. Maziarz, I. Stefaniuk, Electron Magnetic Resonance Study of Ni50.2Mn28.3Ga21.5 Powders. Materials, 17(17), (2024) 4391. https://doi.org/10.3390/ma17174391
  38. A. Vovk, S.A. Bunyaev, P. Štrichovanec, N.R. Vovk, B. Postolnyi, A. Apolinario, J.A. Pardo, P.A. Algarabel, G.N. Kakazei, J.P. Araujo, Control of Structural and Magnetic Properties of Polycrystalline Co2FeGe Films via Deposition and Annealing Temperatures. Nanomaterials, 11(5), (2021) 1229. https://doi.org/10.3390/nano11051229
  39. Y.S. Chen, J.G. Lin, I.S. Titov, A.B. Granovsky, Electron spin resonance probed competing states in NiMnInSi Heusler alloy. Journal of Magnetism and Magnetic Materials, 407, (2016) 365–368. https://doi.org/10.1016/j.jmmm.2016.01.079
  40. Ł. Dubiel, I. Stefaniuk, A. Wal, The Low-Field Microwave Absorption in EMR Spectra for Ni50−xCoxMn35.5In14.5 Ribbons. Materials, 15(17), (2022) 6016.https://doi.org/10.3390/ma15176016
  41. Z. Zhan, Z. Hu, K. Meng, J. Zhao, J. Chu, Temperature dependent phonon Raman scattering of Heusler alloy Co2MnxFe1−xAl/GaAs films grown by molecular-beam epitaxy. RSC Advances, 2(26), (2012) 9899. https://doi.org/10.1039/C2RA21255B
  42. M. Zhai, S. Ye, Z. Xia, F. Liu, C. Qi, X. Shi, G. Wang, Local Lattice Distortion Effect on the Magnetic Ordering of the Heusler Alloy Co2FeAl0.5Si0.5 Film. Journal of Supercond and Novel Magnetism, 27(8), (2014) 1861–1865. https://doi.org/10.1007/s10948-014-2526-z
  43. K. Bera, S. Mukherjee, M. Mukadam, S. Mondal, M.K. Firoz, G. Vaitheeswaran, A. Roy, S.M. Yusuf, Selective electronic excitations in nearly half-metallic Heusler alloy NiFeMnSn—A Raman spectroscopic study. Applied Physics Letters, 121(5), (2022) 052404.https://doi.org/10.1063/5.0097464