Abstract

The crystallization of oxyquinolinium 3-carboxypropanoate (OXSU) was successfully achieved using a well-optimized slow evaporation approach. Although earlier experimental investigations have discussed its structural, thermal, and nonlinear optical (NLO) characteristics, the present study is a detailed computational analysis to clarify the electronic basis of its NLO response. X-ray diffraction (XRD) studies established the non-centrosymmetric (NCS) P21 crystal structure of OXSU, fulfilling the fundamental symmetry condition for second-order NLO activity. Hirshfeld surface (HS) analysis indicated that the intermolecular O–HO/N–HO hydrogen-bonding interactions were particularly important for stabilizing the acentric packing of OXSU for SHG activity. Vibrational spectroscopy (FTIR and FT-Raman) also provided evidence of both functional groups and hydrogen bonding interactions. Moreover, Mulliken charge analysis revealed evidence of charge redistribution during the formation of an asymmetrical charge density. Frontier molecular orbital (FMO) energy level calculations indicated an energy gap (ΔE = 3.82 eV) that encouraged intramolecular charge transfer (ICT). The molecular electrostatic potential (MEP) indicated regions of nucleophilic and electrophilic directions suggesting asymmetrical electron mobility. The material exhibits a high first hyperpolarizability (β = 16.94 × 10-30 esu), which is 33 times that of urea. The second harmonic generation (SHG) response is 30 % greater compared to potassium dihydrogen phosphate (KDP) and demonstrate phase-matchable behavior. This study documents the structure-property (SP) relationships in OXSU, correlating its acentric crystalline packing, hydrogen bonding interactions and charge transfer characteristics with NLO performance. These results establish that OXSU is a highly efficient, phase matchable organic NLO material with significant potential for optoelectronic applications.

Keywords

Organic NLO Single Crystal, Density Functional Theory, Hirshfeld Surface Analysis, Vibrational Studies, Optical Material, Phase Matchable Material,

Downloads

Download data is not yet available.

References

  1. J.K. Zaręba, M. Nyk, M. Samoć, Nonlinear optical properties of emerging nano‐and microcrystalline materials. Advanced Optical Materials, 9(23), (2021) 2100216. https://doi.org/10.1002/adom.202100216
  2. O. Dogadov, C. Trovatello, B. Yao, G. Soavi, G. Cerullo, Parametric nonlinear optics with layered materials and related heterostructures. Laser & Photonics Reviews, 16(9) (2022) 2100726. https://doi.org/10.1002/lpor.202100726
  3. W. Huang, Y. Xiao, F. Xia, X. Chen, T. Zhai, Second harmonic generation control in 2D layered materials: status and outlook. Advanced Functional Materials, 34(16), (2024) 2310726. https://doi.org/10.1002/adfm.202310726
  4. F. Castet, C. Tonnelé, L. Muccioli, B. Champagne, Predicting the second-order nonlinear optical responses of organic materials: the role of dynamics. Accounts of chemical research, 55(24), (2022) 3716-3726. https://doi.org/10.1021/acs.accounts.2c00616
  5. T. Radhakrishnan, Molecular structure, symmetry, and shape as design elements in the fabrication of molecular crystals for second harmonic generation and the role of molecules in-materials. Accounts of chemical research, 41(3), (2008) 367-376. https://doi.org/10.1021/ar7002072
  6. R. Medishetty, J.K. Zaręba, D. Mayer, M. Samoć, R.A. Fischer, Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chemical Society Reviews, 46(16), (2017) 4976-5004. https://doi.org/10.1039/C7CS00162B
  7. M. Khalid, M.U. Khan, I. Shafiq, R. Hussain, K. Mahmood, A. Hussain, R. Jawaria, A. Hussain, M. Imran, M.A. Assiri, NLO potential exploration for D–π–A heterocyclic organic compounds by incorporation of various π-linkers and acceptor units. Arabian Journal of Chemistry, 14(8), (2021) 103295.
  8. J. Wu, Z.a. Li, J. Luo, A.K.Y. Jen, High-performance organic second-and third-order nonlinear optical materials for ultrafast information processing. Journal of Materials Chemistry C, 8(43), (2020) 15009-15026. https://doi.org/10.1039/D0TC03224G
  9. A.U. Hassan, S.H. Sumrra, M. Zubair, G. Mustafa, M.F. Nazar, M.N. Zafar, Structurally modulated D-π-DA (Semiconductor) anchoring dyes to enhance the tunable NLO response: a DFT/TDDFT quest for new photovoltaic materials. Structural Chemistry. 34(3), (2023) 1043-1060. https://doi.org/10.1007/s11224-022-02070-3
  10. I.V. Fedyanin, Control of supramolecular chirality in co-crystals of achiral molecules via stacking interactions and hydrogen bonding. CrystEngComm, 24(14), (2022) 2591-2601. https://doi.org/10.1039/D2CE00081D
  11. P. Alivisatos, P.F. Barbara, A.W. Castleman, J. Chang, D.A. Dixon, M.L. Klein, G.L. McLendon, J.S. Miller, M.A. Ratner, P.J. Rossky, from molecules to materials: Current trends and future directions. Advanced Materials, 10(16), (1998) 1297-1336. https://doi.org/10.1002/(SICI)1521-4095(199811)10:16%3C1297::AID-ADMA1297%3E3.0.CO;2-7
  12. E. Shobhana, B. Balraj, R. Kannan, R. Thirumurugan, Synthesis and physiochemical investigations of imidazolium 4-hydroxybenzoate (I4HB) for nonlinear optical applications. Indian Journal of Chemistry (IJC), 63(6), (2024) 572-578. https://doi.org/10.56042/ijc.v63i6.8855
  13. C. Wang, T. Zhang, W. Lin, Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chemical Reviews, 112(2), (2012) 1084-1104. https://doi.org/10.1021/cr200252n
  14. J. Zhang, X. Li, Intramolecular hydrogen bonding, π-π stacking interactions, and substituent effects of 8-hydroxyquinoline derivative super molecular structures: A theoretical study. Journal of molecular modeling, 25(8), (2019) 241. https://doi.org/10.1007/s00894-019-4140-2
  15. M. Balón, P. Guardado, M.A. Muñoz, C. Carmona, A spectroscopic study of the hydrogen bonding and π–π stacking interactions of harmane with quinolone. Bio spectroscopy, 4(3), (1998) 185-195. https://doi.org/10.1002/(SICI)1520-6343(1998)4:3%3C185::AID-BSPY4%3E3.0.CO;2-3
  16. A. Franklin Ebenazer, M. Saravanabhanvan, N. Sampathkumar, S. Ramesh, M. Shabbir, A.R. Chaudhry, S.K. Lakkaboyana, H. Trilaksana, R.M.N. Kalla, J. Lee, P. Seepana, Synthesis, spectral, crystal structure, linear and NLO properties of quinoline Schiff base: Combined experimental and DFT calculations. Journal of Molecular Structure, 1324, (2025) 140781. https://doi.org/10.1016/j.molstruc.2024.140781
  17. R. Thirumurugan, B. Babu, K. Anitha, Exploring second-order NLO activity in imidazolium quinoline-2-carboxylate dihydrate (IQD): Synthesis, crystal engineering, spectral and DFT insights. Journal of Molecular Structure, 1351, (2026) 144130. https://doi.org/10.1016/j.molstruc.2025.144130
  18. H. Bouabbaci, A.K. Nacereddine, Effect of electronic nature of substituent position on the linear and nonlinear optical and physical properties of some quinoline derivatives: A computational study. Molecular Physics, 123(17), (2025). https://doi.org/10.1080/00268976.2025.2456112
  19. A. Jamal, M.S.H. Faizi, A.K. Roy, Synthesis, crystal structure, and spectroscopic study of a novel quinoline derivative with nonlinear optical activity and esterase inhibition potential. Journal of Molecular Structure, 1352, (2026) 144407. https://doi.org/10.1016/j.molstruc.2025.144407
  20. S.A. Aloudah, A.A. Fadda, E. Abdel-Latif, E. Nabil, M. Zakaria, Multifunctional D-π-A dyes featuring triphenylamine–quinoline architecture: Rational design for prospective photovoltaic and nonlinear optical performance. Journal of Molecular Structure, 1350, (2026) 144024. https://doi.org/10.1016/j.molstruc.2025.144024
  21. R. Wang, Y. Cao, D. Jia, L. Liu, F. Li, New approach to synthesize 8-hydroxyquinoline-based complexes with Zn2+ and their luminescent properties. Optical Materials, 36(2), (2013) 232-237. https://doi.org/10.1016/j.optmat.2013.08.032
  22. G. Parvathy, R. Kaliammal, K. Velsankar, V. Mohankumar, K. Sankaranarayanan, S. Sudhahar, Physicochemical and computational perspectives of 8-hydroxyquinoline 5-chloro-2-hydroxybenzoic acid: a novel second-order nonlinear optical crystal. Applied Physics A, 127(12), (2021) 957. https://doi.org/10.1007/s00339-021-05115-2
  23. G. Peramaiyan, P. Pandi, N. Vijayan, G. Bhagavannarayana, R.M. Kumar, Crystal growth, structural, thermal, optical and laser damage threshold studies of 8-hydroxyquinolinium hydrogen maleate single crystals. Journal of crystal growth, 375, (2013) 6-9. https://doi.org/10.1016/j.jcrysgro.2013.04.011
  24. M.D. Halls, H.B. Schlegel, Molecular orbital study of the first excited state of the OLED material tris (8-hydroxyquinoline) aluminum (III). Chemistry of materials, 13(8), (2001) 2632-2640. https://doi.org/10.1021/cm010121d
  25. R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, Investigation on growth, structure and characterization of succinate salt of 8-hydroxyquinoline: an organic NLO crystal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140 (2015) 44-53. https://doi.org/10.1016/j.saa.2014.12.093
  26. M. Khalid, M. Khan, K. Mahmood, M. Arshad, M. Imran, A.A.C. Braga, R. Hussain, Theoretical designing of non-fullerene derived organic heterocyclic compounds with enhanced nonlinear optical amplitude: a DFT based prediction. Scientific Reports, 12(1), (2022) 20220. https://doi.org/10.1038/s41598-02221894-x
  27. S. Chatterjee, M. Afzal, P.C. Mandal, R. Modak, M. Guin, S. Konar, Exploration of supramolecular interactions, Hirshfeld surface, FMO, molecular electrostatic potential (MEP) analyses of pyrazole based Zn (II) complex. Journal of the Indian Chemical Society, 101(10), (2024) 101275. https://doi.org/10.1016/j.jics.2024.101275
  28. M. Guin, S. Halder, S. Chatterjee, S. Konar, Synthesis, X-ray crystal structure of Cu (II) 1D coordination Polymer: In View of Hirshfeld surface, FMO, Molecular electrostatic potential (MEP) and Natural Bond orbital (NBO) analyses. Journal of Molecular Structure, 1270, (2022) 133949. https://doi.org/10.1016/j.molstruc.2022.133949
  29. Enraf-Nonius, CAD-4 EXPRESS Version 5.1/1.2, Enraf-Nonius, Delft, 1994.
  30. M.J.E.A. Frisch, (2009). gaussian 09, Revision d. 01, Gaussian. Inc, Wallingford CT, 201.
  31. R. Dennington, T.A. Keith, J.M. Millam, (2016). GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA.
  32. J.J. McKinnon, F.P.A. Fabbiani, M.A. Spackman, Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis. Crystal Growth & Design, 7(4), (2007) 755-769. https://doi.org/10.1021/cg060773k
  33. X. Liu, Y.C. Yang, M.Y. Li, L. Chen, L.M. Wu, Anisotropic structure building unit involving diverse chemical bonds: a new opportunity for high-performance second-order NLO materials. Chemical Society Reviews, 52(24), (2023) 8699-8720. https://doi.org/10.1039/D3CS00691C
  34. L. Jensen, L. Zhao, J. Autschbach, G. Schatz, Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. The Journal of chemical physics, 123(17), (2005). https://doi.org/10.1063/1.2046670
  35. V. Krishnakumar, R. Ramasamy, DFT studies and vibrational spectra of isoquinoline and 8 hydroxyquinoline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(4), (2005) 673-683. https://doi.org/10.1016/j.saa.2004.05.030
  36. E. Shobhana, R. Kesavasamy, H. Arul, R. Thirumurugan, B. Babu, Synthesis, structural, hirshfeld, spectral, thermal, Z-scan analysis and computational studies of 4-chloroanilinium quinoline-2-carboxylate (4CQ). Journal of molecular structure, 1204, (2020)127516. https://doi.org/10.1016/j.molstruc.2019.127516
  37. R. Thirumurugan, S. Priyadharshini, B. Babu, B.M. Babu, K. Anitha, An efficient phase matching second harmonic generation of 2-amino-4-methylpyridinium quinoline-2-carboxylate (C16H15N3O2) organic single crystal: Structural, optical, thermal, and computational investigations. Journal of Molecular Structure, 1332, (2025) 141453. https://doi.org/10.1016/j.molstruc.2025.141453
  38. A. Shafiq, M. Adnan, R. Hussain, Z. Irshad, U. Farooq, S. Muhammad, Molecular engineering of anthracene core-based hole-transporting materials for organic and perovskite photovoltaics. ACS omega, 8(39), (2023) 35937-35955. https://doi.org/10.1021/acsomega.3c03790
  39. H. Cheng, W. Jin, Z. Yang, S. Pan, Performance of optical materials with the derivative of planar π-conjugated groups: Recent advances and future prospects. Inorganic Chemistry Frontiers, 9(17), (2022) 4554-4568. https://doi.org/10.1039/D2QI00990K
  40. T.C. Lin, J.M. Cole, A.P. Higginbotham, A.J. Edwards, R.O. Piltz, J. Perez-Moreno, J.Y. Seo, S.C. Lee, K. Clays, O.P. Kwon, Molecular origins of the high-performance nonlinear optical susceptibility in a phenolic polyene chromophore: electron density distributions, hydrogen bonding, and ab initio calculations. The Journal of Physical Chemistry C, 117(18), (2013) 9416-9430. https://doi.org/10.1021/jp400648q
  41. A. Haque, K.M. Alenezi, M.S. Khan, W.-Y. Wong, P.R. Raithby, Non-covalent interactions (NCIs) in π-conjugated functional materials: advances and perspectives. Chemical Society Reviews, 52(2), (2023) 454-472. https://doi.org/10.1039/D2CS00262K
  42. T. Lerdwiriyanupap, R. Cedeno, P. Nalaoh, S. Bureekaew, V. Promarak, A.E. Flood, Enantiopurification of Mandelic Acid by Crystallization-Induced Diastereomer Transformation: An Experimental and Computational Study, Crystal Growth & Design, 23(3), (2023) 2001-2010. https://doi.org/10.1021/acs.cgd.2c01551
  43. E.U. Mughal, S.F. Kainat, A.M. Almohyawi, N. Naeem, E.M. Hussein, A. Sadiq, A. Abd-El-Aziz, N. Ma, A.S. Abd-El-Aziz, A. Timoumi, Thermally activated delayed fluorescence materials: innovative design and advanced application in biomedicine, catalysis and electronics. RSC advances, 15(10), (2025) 7383-7471. https://doi.org/10.1039/D5RA00157A
  44. S.W. Yang, A. Elangovan, K.C. Hwang, T.I. Ho, Electronic polarization reversal and excited state intramolecular charge transfer in donor/acceptor ethynylpyrenes. The Journal of Physical Chemistry B, 109(35), (2005) 16628-16635. https://doi.org/10.1021/jp052086u
  45. M.U. Khan, M. Ibrahim, M. Khalid, A.A.C. Braga, S. Ahmed, A. Sultan, Prediction of second-order nonlinear optical properties of D–π–A compounds containing novel fluorene derivatives: A promising route to giant hyperpolarizabilities. Journal of Cluster Science, 30(2), (2019) 415-430. https://doi.org/10.1007/s10876-018-01489-1
  46. S. Nadeem, A. Anwar, M.U. Khan, M. Idrees, M.A. El-Tayeb, M.A. Ibrahim, Unveiling charge transfer kinetics and static-dynamic nonlinear optical switching in 2-phenylthiophene push-pull chromophores: DFT-based theoretical modelling for enhanced harmonic generation and electro-optic applications, Journal of Molecular Graphics and Modelling, (2025)109061. https://doi.org/10.1016/j.jmgm.2025.109061
  47. S. Semin, X. Li, Y. Duan, T. Rasing, Nonlinear optical properties and applications of fluorenone molecular materials. Advanced Optical Materials, 9(23), (2021) 2100327. https://doi.org/10.1002/adom.202100327
  48. Q. Li, Z. Li, Molecular packing another key point for the performance of organic and polymeric optoelectronic materials. Accounts of Chemical Research, 53(4), (2020) 962-973. https://doi.org/10.1021/acs.accounts.0c00060
  49. I. Kaifi, S. Muhammad, S. Bibi, S. Urrehman, A. Kalam, A.R. Chaudhry, S.S. Alarfaji, A.G. Al‐Sehemi, Optimizing Core Modifications for High‐Performance D‐A‐D Molecular Systems: a Multi‐Faceted Study on NLO Properties, Solvent Effects, Charge Transfer, and Photovoltaic Efficiency. Advanced Theory and Simulations, (2025) 2500169. https://doi.org/10.1002/adts.202500169
  50. J.H. Jeong, J.S. Kim, J. Campo, S.H. Lee, W.Y. Jeon, W. Wenseleers, M. Jazbinsek, H. Yun, O.P. Kwon, N-Methylquinolinium derivatives for photonic applications: Enhancement of electron-withdrawing character beyond that of the widely used N-methylpyridinium. Dyes and Pigments, 113, (2015) 8-17. https://doi.org/10.1016/j.dyepig.2014.07.016
  51. A. Datta, S.K. Pati, Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability. Chemical Society Reviews, 35(12), (2006) 1305-1323. https://doi.org/10.1039/B605478A
  52. X. Shi, W. Bao, Hydrogen-bonded conjugated materials and their application in organic field-effect transistors. Frontiers in Chemistry, 9, (2021) 723718. https://doi.org/10.3389/fchem.2021.723718
  53. D. Pant, S. Sitha, Roles of bridges on electronic, linear and nonlinear optical properties: a computational study on zwitterions with N-methyl pyridinium and p-dicyanomethanide phenylene. Computational and Theoretical Chemistry, 1229, (2023) 114308. https://doi.org/10.1016/j.comptc.2023.114308