Abstract

Oral microbiota plays an essential role in maintaining oral health. However, when pathogenic bacteria colonize the oral cavity and integrate into the biofilm, diseases such as gingivitis, dental caries, periodontitis, and peri-implantitis may occur. In this study, the antimicrobial, antibiofilm, antioxidant activities, and toxicity of selenium nanoparticles (SeNPs) were examined. SeNPs were synthesized using a green method with Syzygium aromaticum extract, which enhanced their stability and antimicrobial effect. Characterization using UV–Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy confirmed the formation of stable, spherical SeNPs with sizes ranging from 20-80 nm. The antimicrobial assays revealed that Candida albicans exhibited the largest zone of inhibition, indicating strong antifungal activity of the SeNPs, while antibacterial effects were also significant against oral pathogens at 100 µg/mL concentration. In addition, SeNPs demonstrated antibiofilm potential, effectively reducing biofilm formation at (100 µg/mL) higher concentrations, which showed sensitive to Enterococcus faecalis. Toxicity evaluation using zebrafish embryos confirmed their biocompatibility at therapeutic concentrations, with minimal adverse effects. These findings suggest that SeNPs hold promise as a natural, effective and biocompatible agent for oral healthcare applications, particularly in the management of oral infections and biofilm-associated diseases.

Keywords

Antimicrobial Activity, Selenium nanoparticles, Syzygium aromaticum, Time-Kill Curve, Toxicity,

Downloads

Download data is not yet available.

References

  1. T. Zhang, M. Qi, Q. Wu, P. Xiang, D. Tang, Q. Li, Recent research progress on the synthesis and biological effects of selenium nanoparticles. Frontiers in Nutrition, 10, (2023) 1183487. https://doi.org/10.3389/fnut.2023.1183487
  2. N. Bisht, P. Phalswal, P.K. Khanna, Selenium nanoparticles: A review on synthesis and biomedical applications. Materials Advances, 3, (2022) 1415–1431. https://doi.org/10.1039/D1MA00639H
  3. N. Filipović, D. Ušjak, M.T. Milenković, K. Zheng, L. Liverani, A.R. Boccaccini, M.M. Stevanović, Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Frontiers in Bioengineering and Biotechnology, 8, (2020) 624621. https://doi.org/10.3389/fbioe.2020.624621
  4. J.J.O. Garza-García, J.A. Hernández-Díaz, A. Zamudio-Ojeda, J.M. León-Morales, A. Guerrero-Guzmán, D.R. Sánchez-Chiprés, J.C. López-Velázquez, S. García-Morales, The role of selenium nanoparticles in agriculture and food technology. Biological Trace Element Research, 200, (2022) 2528–2548. https://doi.org/10.1007/s12011-021-02847-3
  5. C. Ferro, H.F. Florindo, H.A. Santos, Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Advanced Healthcare Materials, 10(16), (2021) 2100598. https://doi.org/10.1002/adhm.202100598
  6. E. Sans-Serramitjana, M. Obreque, F. Muñoz, C. Zaror, M.D.L.L. Mora, M. Viñas, P. Betancourt, Antimicrobial activity of selenium nanoparticles (SeNPs) against potentially pathogenic oral microorganisms: A scoping review. Pharmaceutics, 15(9), (2023) 2253. https://doi.org/10.3390/pharmaceutics15092253
  7. M. Safaei, H.R. Mozaffari, H. Moradpoor, M.M. Imani, R. Sharifi, A. Golshah, Optimization of green synthesis of selenium nanoparticles and evaluation of their antifungal activity against oral Candida albicans infection. Advances in Materials Science and Engineering, 2022, (2022) 1376998. https://doi.org/10.1155/2022/1376998
  8. M.A.O. Dawood, M.F.E. Basuini, S. Yilmaz, H.M.R. Abdel-Latif, Z.A. Kari, M.K.A. Abdul Razab, H.A. Ahmed, M. Alagawany, M.S. Gewaily, Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: A review. Antioxidants, 10(9), (2021) 1364. https://doi.org/10.3390/antiox10091364
  9. W. Lin, J. Zhang, J.-F. Xu, J. Pi, The advancing of selenium nanoparticles against infectious diseases. Frontiers in Pharmacology, 12, (2021) 682284. https://doi.org/10.3389/fphar.2021.682284
  10. K. Kamala, P. Sivaperumal, D. Ganapathy, Avicennia marina mangrove plant mediated selenium nanoparticles and their therapeutic activity against oral pathogens and other biological properties. Journal of Dentistry Indonesia, 31(2), (2024) 93–100. https://doi.org/10.14693/jdi.v31i2.1585.
  11. M. Shahbaz, A. Akram, N.I. Raja, T. Mukhtar, Z.U.R. Mashwani, A. Mehak, N. Fatima, S. Sarwar, E.U. Haq, T. Yousaf, Green synthesis and characterization of selenium nanoparticles and its application in plant disease management: A review. Pakistan Journal of Phytopathology, 34, (2022). https://doi.org/10.33866/phytopathol.034.01.0739
  12. V. Maggini, G. Semenzato, E. Gallo, A. Nunziata, R. Fani, F. Firenzuoli, Antimicrobial activity of Syzygium aromaticum essential oil in human health treatment. Molecules, 29, (2024) 999. https://doi.org/10.3390/molecules29050999
  13. V.K. Pandey, S. Srivastava, K.K. Dash, R. Singh, A.H. Dar, T. Singh, A. Farooqui, A.M. Shaikh, B. Kovacs, Bioactive properties of clove (Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review. Heliyon, 10, (2024) e22437. https://doi.org/10.1016/j.heliyon.2023.e22437
  14. T. Sargsyan, H.M. Simonyan, L. Stepanyan, A. Tsaturyan, C. Vicidomini, R. Pastore, G. Guerra, G.N. Roviello, Neuroprotective properties of clove (Syzygium aromaticum): State of the art and future pharmaceutical applications for Alzheimer’s disease. Biomolecules, 15(3), (2025) 452. https://doi.org/10.3390/biom15030452
  15. H.Y. Mostafa, G.S. El-Sayyad, H.G. Nada, R.A. Ellethy, E.G. Zaki, Promising antimicrobial and antibiofilm activities of Orobanche aegyptiaca extract-mediated bimetallic silver-selenium nanoparticles synthesis: Effect of UV-exposure, bacterial membrane leakage reaction mechanism, and kinetic study. Archives of Biochemistry and Biophysics, 736, (2023) 109539. https://doi.org/10.1016/j.abb.2023.109539
  16. J. Johnson, R. Shanmugam, P. Manigandan, Characterization and Biomedical Applications of Green-Synthesized Selenium Nanoparticles Using Tridax procumbens Stem Extract. Cureus, 16, (2024) e63535. https://doi.org/10.7759/cureus.63535
  17. S. Yuan, Y. Zhang, P.Y. Dong, Y.M.C. Yan, J. Liu, B.Q. Zhang, M.M. Chen, S.E. Zhang, X.F.A. Zhang, comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon, 10(15), (2024) 101235. https://doi.org/10.1016/j.heliyon.2024.e34975
  18. S. Sampath, V. Sunderam, M. Manjusha, Z. Dlamini, A.V. Lawrance, Selenium nanoparticles: A comprehensive examination of synthesis techniques and their diverse applications in medical research and toxicology studies. Molecules, 29(4), (2024) 801. https://doi.org/10.3390/molecules29040801
  19. J.R.S.M. Reddy, K.P. Kannan, K. Sankaran, V.V. Priya, P. Sathishkumar, Eradication of dental pathogens using flavonoid rutin mediated silver-selenium nanoparticles. Inorganic Chemistry Communications, 157, (2023) 111391. https://doi.org/10.1016/j.inoche.2023.111391.
  20. K.K. Karthik, B.V. Cheriyan, S. Rajeshkumar, M. Gopalakrishnan, A review on selenium nanoparticles and their biomedical applications. Biomedical Technology, 6, (2024) 61–74. https://doi.org/10.1016/j.bmt.2023.12.001
  21. A. Munteanu, A. Gogulescu, C. Șoica, A. Mioc, M. Mioc, A. Milan, A.T. Lukinich-Gruia, M.A. Pricop, C. Jianu, C. Banciu, R. Racoviceanu, In vitro and in silico evaluation of Syzygium aromaticum essential oil: Effects on mitochondrial function and cytotoxic potential against cancer cells. Plants, 13(23), (2024) 3443. https://doi.org/10.3390/plants13233443
  22. H. Boughroud, O. Chgari, H. Wahnou, A.E. Amrani, O.E. Faqer, F. Amarir, E.M. Mtairag, S. Rais, F.Bourjilat, Assessing Syzygium aromaticum: From chemical profiling to antioxidant, antistaphylococcal, and biocompatibility attributes. Chem Biodivers, 22, (2025) e202402605. https://doi.org/10.1002/cbdv.202402605
  23. S.H. Awojide, E.O. Fadunmade, A.A. Adegboye, K.A. Oyewole, I.S. Adedotun, A.G. Adeyemo, J.V. Ayeni, A comparative study on the synergistic activities of fractions and crude essential oil of Syzygium aromaticum. Bull Natl Res Cent, 48, (2024) 101234. https://doi.org/10.1186/s42269-024-01205-2
  24. A. Sukohar, F.I. Armadany, N.A.F. Bakede, M.H. Malaka, D.A. Ramdini, A.N.T. Adjeng, Antimicrobial activity of Syzygium aromaticum L. leaves essential oil against Candida albicans and Streptococcus mutans. Research Journal of Pharmacy and Technology, 15(12) (2022) 5672–5676. https://doi.org/10.52711/0974-360X.2022.00956
  25. J.N. Haro-González, G.A. Castillo-Herrera, M. Martínez-Velázquez, H. Espinosa-Andrews, Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules, 26(21), (2021) 6387. https://doi.org/10.3390/molecules26216387
  26. O.U. Igwe, M.U. Anyaogu, I.E. Otuokere, Chemical, antioxidant and antibacterial assessment of clove (Syzygium aromaticum) seed extract and in-silico pharmacokinetic exploration of the prominent compounds. Journal of Applied Sciences and Environmental Management, 28(7), (2024) 1935–1943. https://doi.org/10.4314/jasem.v28i7
  27. I. Ryntathiang, L. Panchatcharam, M.S. Vilvasekaran, A. Behera, M. Prasad, Y. Chandrasekaran, M.K.D. Jothinathan, Bee pollen derived cobalt nanoparticles: Green synthesis, multifunctional bioactivity and in silico evaluation of phytochemicals. Inorganic Chemistry Communications, 182, (2025) 115425. https://doi.org/10.1016/j.inoche.2025.115425
  28. A. Behera, M.K.D. Jothinathan, Biogenic nanoparticles of Co, Zn, Se and Ni via Shorea robusta extract: Comparative insights into antimicrobial, antioxidant and toxic effects. Nano LIFE, (2025) 101234. https://doi.org/10.1142/S1793984425500114
  29. S. Kirubai, D. Rachel, V. Ramalingam, S.M. Venkatraman, T. Panneerselvam, M.K. Dharmalingam Jothinathan, I. Ryntathiang, A. Behera, Green synthesis of silver nanoparticles from Tribulus terrestris and investigation of their antioxidant and anticancer activities against MG-63 osteosarcoma cells. Tropical Journal of Natural Product Research, 9(7), (2025) 101234. https://doi.org/10.26538/tjnpr/v9i7.29
  30. Z. Haris, A.U. Khan, Selenium nanoparticle enhanced photodynamic therapy against biofilm forming Streptococcus mutans. International Journal of Life Sciences Scientific Research, 3(5), (2017) 1287–1294. https://doi.org/10.21276/ijlssr.2017.3.5.4
  31. A.E. Mekky, A.E. Emam, M.N. Selim, E.S. Abdelmouty, M. Khedr, Antibacterial and antineoplastic MCF-7 and HePG-2 characteristics of the methanolic (80%) clove (Syzygium aromaticum L.) extract. Biomass Conversion and Biorefinery, 14(15), (Z`2024) 16787–16798. https://doi.org/10.1007/s13399-023-03862-1
  32. B. Si, Y. Yang, M. Naveed, F. Wang, M.W.H. Chan, Characterizations of biogenic selenium nanoparticles and their anti-biofilm potential against Streptococcus mutans ATCC 25175. Journal of Trace Elements in Medicine and Biology, 84, (2024) 127448. https://doi.org/10.1016/j.jtemb.2024.127448
  33. W.A. Abd-Elraoof, A.A. Tayel, S.W. El-Far, O.M. Walid Abukhatwah, A.M. Diab, O.M. Abonama, M.A. Assas, A. Abdella, Characterization and antimicrobial activity of a chitosan-selenium nanocomposite biosynthesized using Posidonia oceanica. RSC advances, 13, (2023) 26001–26014. https://doi.org/10.1039/D3RA04288J
  34. J. Hou, Y. Tamura, H.Y. Lu, Y. Takahashi, S. Kasugai, H. Nakata, S. Kuroda, An in vitro evaluation of selenium nanoparticles on osteoblastic differentiation and antimicrobial properties against Porphyromonas gingivalis. Nanomaterials, 12(11), (2022) 1850. https://doi.org/10.3390/nano12111850
  35. J. Linoj, G.A. Sundaram, D. Ganapathy, Exploring the biological potential of an innovative mixed valence iron complex: [Fe (bipy) 3][(μ-oxo) Fe 2Cl6] in microbial inhibition and anticancer applications. Journal of Molecular Structure, 1326, (2025) 141108. https://doi.org/10.1016/j.molstruc.2024.141108
  36. R. Sowmya, S. Namasivayam, K.S. Sivasuriyan, G.S. Varshan, Nano-selenium-derived polymeric bionanocomposites induced antibacterial, anti-biofouling efficacy against enterobacterial waterborne pathogens, and their ecotoxicity assessment. Bionanoscience, 15, (2025) 101234. https://doi.org/10.1007/s12668-024-01667-8
  37. J.J. Wilson, S. Mahalakshmi, R. Thangaraj, S. Mahendran, T. Sivakumar, D.N.P. Sudarmani, A. Immanuvel, B. Venkidasamy, Biological synthesis of silver nanoparticles using Klebsiella pneumoniae (ON640793) and assessment of its antibacterial, larvicidal and biotoxicity efficiency. Bionanoscience, 15(1), (2025) 84. https://doi.org/10.1007/s12668-024-01754-w
  38. A. Behera, N. Ranjith, S. Balasubramani, I. Ryntathiang, M.K. Dharmalingam Jothinathan, Evaluating the toxicity profile of green-synthesized ferric nanoparticles using Madhuca indica in a zebrafish model. Biomedical Materials &Devices, (2025) 1–15. https://doi.org/10.1007/s44174-025-00348-8
  39. S.K. ElSheikh, E.S.G. Eid, A.M. Abdelghany, D. Abdelaziz, Physical/mechanical and antibacterial properties of composite resin modified with selenium nanoparticles. BMC Oral Health, 24, (2024) 1245. https://doi.org/10.1186/s12903-024-04965-5
  40. S.J. Xue, X.T. Zhang, X.C. Li, F.Y. Zhao, X. Shu, W.W. Jiang, J.Y. Zhang, Multi-pathways-mediated mechanisms of selenite reduction and elemental selenium nanoparticles biogenesis in the yeast-like fungus Aureobasidium melanogenum I15. Journal of Hazardous Materials, 470, (2024) 134204. https://doi.org/10.1016/j.jhazmat.2024.134204
  41. A.A. Hamed, M.T. Hawwa, D.M. Baraka, H.M. El-Shora, G.S. El-Sayyad, N.E. Al-Hazmi, M.G. Hassan, Understanding antimicrobial activity of biogenic selenium nanoparticles and selenium/chitosan nano-incorporates via studying their inhibition activity against key metabolic enzymes. International Journal of Biological Macromolecules, 298, (2025) 140073. https://doi.org/10.1016/j.ijbiomac.2025.140073
  42. M.K. Dharmalingam Jothinathan, A. Behera, S. Ramalingam, M.M. Alam, M. Amanullah, R. Karunakaran, Review on bio-selenium nanoparticles: Synthesis, protocols, and applications in biomedical processes. Nanotechnology Reviews, 14, (2025) 20250183. https://doi.org/10.1515/ntrev-2025-0183
  43. P. Chilala, M. Jurickova, Z. Pokorna, T. Motlova, P. Horky, S. Skalickova, Antioxidant properties and antimicrobial activity of selenium nanoparticles synthetized via Zambian medicinal herbs. PLoS One, 20(6), (2025) e0325460. https://doi.org/10.1371/journal.pone.0325460
  44. F. Ameen, N.S. Almalki, R. Alshalan, P. Sakayanathan, Green synthesis of selenium nanoparticles utilizing Drimia indica: Insights into anticancer and antimicrobial activities. Microscopy Research and Technique, 88(3), (2025) 749–760. https://doi.org/10.1002/jemt.24726
  45. T.P. Oliveira, A.K. Lima, L.A. Muehlmann, An updated review of the antimicrobial potential of selenium nanoparticles and selenium-related toxicological issues. Future Pharmacology, 5(1), (2025) 3. https://doi.org/10.3390/futurepharmacol5010003
  46. S.A. Abdulmumini, B.O. Yusuf-Salihu, J.A. Elegbede, A. Lateef, Green synthesis of selenium nanoparticles using Ficus platyphylla leaf and bark extracts: Antimicrobial activity against MRSA and other pathogens, anticoagulant and Antioxidantproperties. https://doi.org/10.21203/rs.3.rs-5889538/v1
  47. A.Y. Soliman, N.M. Elguindy, A.M. Saleh, M. Balbaa, Biochemical and molecular evaluation of resveratrol and selenium nanoparticles in managing type 2 diabetes and its complications. Scientific Reports, 15(1), (2025) 25565. https://doi.org/10.1038/s41598-025-11156-x
  48. A. Ferroudj, A. Muthu, D. Sári, G. Törős, Á. Beni, L. Czeglédi, R. Knop, H. El-Ramady, J. Prokisch, Comparative study of red and grey selenium nanoparticles on organ-specific selenium deposition and growth performance in Japanese quails. Nanomaterials, 15(11), (2025) 801. https://doi.org/10.3390/nano15110801
  49. J.A. Hernández-Díaz, J.J. Garza-García, J.M. León-Morales, A. Zamudio-Ojeda, J. Arratia-Quijada, G. Velázquez-Juárez, J.C. López-Velázquez, S. García-Morales, Antibacterial activity of biosynthesized selenium nanoparticles using extracts of Calendula officinalis against potentially clinical bacterial strains. Molecules, 26(19), (2021) 5929. https://doi.org/10.3390/molecules26195929