Abstract

Several machine learning models and their ensembles have been suggested for reference evapotranspiration (ET0) modeling at different climatic regions. Researchers reported that optimizing model hyperparameters using an intelligent algorithm significantly improves the performance of such models. However, ensemble models hybridized with hyperparameter optimizers have hardly been applied for the precise estimation of ET0 worldwide. The current research is devoted to designing sixteen hybrid versions of four ensemble models, alternatively coupled with four popular swarm intelligence optimization algorithms and finding the best-fit model against different input combinations of available climatic parameters for the groundwater-stressed region of North Bengal, India. The performances of four ensemble models and their sixteen hybrid versions were compared in terms of four well-recognized statistical metrics: the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), root mean squared error (RMSE), and mean absolute error (MAE). Experimental results depicted that in nearly 92% of cases, the hybrid versions outperformed the primary ensemble models, irrespective of the available climatic parameters. In most cases, the ensemble models hybridized with the whale optimization algorithm (WOA) produced the highest estimation accuracy, followed by the sailfish optimizer (SFO). Solar radiation was also found to be the most significant climatic parameter for estimating ET0 in this region.

Keywords

Reference Evapotranspiration, Ensemble Learners, Unified Model, Swarm Intelligence Optimization Algorithms,

Downloads

Download data is not yet available.

References

  1. D. Petković, M. Gocic, S. Trajkovic, S. Shamshirband, S. Motamedi, R. Hashim, H. Bonakdari. Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology. Computers and Electronics in Agriculture, 114, (2015) 277–284. https://doi.org/10.1016/j.compag.2015.04.012
  2. N. Shan, Z. Shi, X. Yang, J. Gao, D. Cai. Spatiotemporal trends of reference evapotranspiration and its driving factors in the Beijing–Tianjin Sand Source Control Project Region, China. Agricultural and Forest Meteorology, 200, (2014) 322–333. https://doi.org/10.1016/j.agrformet.2014.10.008
  3. T. Wu, W. Zhang, X. Jiao, W. Guo, Y.A. Hamoud. Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables. PLoS ONE, 15(6), (2020) e0235324. https://doi.org/10.1371/journal.pone.0235324
  4. M. Nazari, M.R. Chaichi, H. Kamel, M. Grismer, S.M.M. Sadeghi. (2020). Evaluation of estimation methods for monthly reference evapotranspiration in arid climates. Arid Ecosystems, 10(4), 329–336. https://doi.org/10.1134/S2079096120040150
  5. G.H. Hargreaves, Z.A. Samani. Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), (1985) 96–99. https://doi.org/10.13031/2013.26773
  6. C.H.B. Priestley, R.J. Taylor. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), (1972) 81–92. https://doi.org/10.1175/1520-0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2
  7. S. Irmak, A. Irmak, R.G. Allen, J.W. Jones. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal of irrigation and drainage engineering, 129(5), (2003) 336-347. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(336)
  8. G.F. Makkink. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers, 11, (1957) 277–288. https://www.fao.org/3/x0490e/x0490e00.htm
  9. R.G. Allen, L.S. Pereira, D. Raes, M. Smith. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), (1998) D05109. https://www.fao.org/3/x0490e/x0490e00.htm
  10. M. Valipour, M.A.G. Sefidkouhi, M. Raeini-Sarjaz. Spatiotemporal analysis of reference evapotranspiration in arid, semiarid, Mediterranean and very humid climates considering developed models and lysimeter measurements. Water Conservation Science and Engineering, 5(1–2), (2020) 81–96. https://doi.org/10.1007/s41101-020-00087-5
  11. A. Sarma, K. Bharadwaj. Determination of crop-coefficients and estimation of evapotranspiration of rapeseed using lysimeter and different reference evapotranspiration models. Journal of Agrometeorology, 22(2), (2020) 172-178. https://doi.org/10.54386/jam.v22i2.158
  12. Y. Feng, N. Cui, D. Gong, Q. Zhang, L. Zhao. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management, 193, (2017) 163–173. https://doi.org/10.1016/j.agwat.2017.08.003
  13. Y. Feng, Y. Peng, N. Cui, D. Gong, K. Zhang, Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, (2017) 71–78. https://doi.org/10.1016/j.compag.2017.01.027
  14. O. Kisi, (2013). Comparison of different empirical methods for estimating daily reference evapotranspiration in Mediterranean climate. Journal of Irrigation and Drainage Engineering, 140(1), 04013002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000664
  15. W. Jing, Z.M. Yaseen, S. Shahid, M.K. Saggi, H. Tao, O. Kisi, S.Q. Salih, N. Al-Ansari, K. Chau. Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Engineering Applications of Computational Fluid Mechanics, 13(1), (2019) 811–823. https://doi.org/10.1080/19942060.2019.1645045
  16. H. Tabari, P.H. Talaee. Local calibration of the Hargreaves and Priestley-Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. Journal of Hydrologic Engineering, 16(10), (2011) 837–845. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000366
  17. Z. Zhou, L. Zhao, A. Lin, W. Qin, Y. Lu, J. Li, Y. Zhong, L. He. Exploring the potential of deep factorization machine and various gradient boosting models in modeling daily reference evapotranspiration in China. Arabian Journal of Geosciences, 13(24), (2020) 1287. https://doi.org/10.1007/s12517-020-06293-8
  18. L. Wang, O. Kisi, B. Hu, M. Bilal, M. Zounemat‐Kermani, H. Li. Evaporation modelling using different machine learning techniques. International Journal of Climatology, 37(S1), (2017) 1076–1092. https://doi.org/10.1002/joc.5064
  19. L. Wang, O. Kisi, M. Zounemat-Kermani, H. Li. Pan evaporation modeling using six different heuristic computing methods in different climates of China. Journal of Hydrology, 544, (2016) 407–427. https://doi.org/10.1016/j.jhydrol.2016.11.059
  20. Y. Huang, Y. Lan, S.J. Thomson, A. Fang, W.C. Hoffmann, R.E. Lacey. Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agriculture, 71(2), (2010) 107–127. https://doi.org/10.1016/j.compag.2010.01.001
  21. A. Raza, Y. Hu, M. Shoaib, M.K.A. Elnabi, M. Zubair, M. Nauman, N. Syed. A Systematic Review on Estimation of Reference Evapotranspiration under Prisma Guidelines. Polish Journal of Environmental Studies. 30(6), (2021) 5413-5422. https://doi.org/10.15244/pjoes/136348
  22. M.Y. Chia, Y.F. Huang, C.H. Koo, K.F. Fung. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy, 10(1), (2020) 101. https://doi.org/10.3390/agronomy10010101
  23. N.L.O. Odhiambo, N.R.E. Yoder, N.D.C. Yoder, N.J.W. Hines. Optimization of fuzzy evapotranspiration model through neural training with input–output examples. Transactions of the ASAE, 44(6), (2001) 1625–1633. https://doi.org/10.13031/2013.7049
  24. N.P.N. Balve, N.J.N. Patel. Prediction of evapotranspiration using Fuzzy logic. Journal of Agrometeorology, 18(2), (2016) 311–314. https://doi.org/10.54386/jam.v18i2.958
  25. S. Walls, A.D. Binns, J. Levison, S. MacRitchie. (2020). Prediction of actual evapotranspiration by artificial neural network models using data from a Bowen ratio energy balance station. Neural Computing and Applications, 32(17), 14001–14018. https://doi.org/10.1007/s00521-020-04800-2
  26. S. Dimitriadou, K.G. Nikolakopoulos. Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece. Water, 14(13), (2022) 2027. https://doi.org/10.3390/w14132027
  27. P.S. Käfer, N.S. Da Rocha, L.R. Diaz, E.A. Kaiser, D.C. Santos, G.P. Veeck, D.R. Robérti, S.B.A. Rolim, G.G. De Oliveira. Artificial neural networks model based on remote sensing to retrieve evapotranspiration over the Brazilian Pampa. Journal of Applied Remote Sensing, 14(03), (2020) 038504. https://doi.org/10.1117/1.JRS.14.038504
  28. G.M. Mulualem, Y. Liou. Application of artificial neural networks in forecasting a standardized precipitation evapotranspiration index for the Upper Blue Nile Basin. Water, 12(3), (2020) 643. https://doi.org/10.3390/w12030643
  29. A. Raza, M. Shoaib, A. Khan, F. Baig, M.A. Faiz, M.M. Khan, Application of non-conventional soft computing approaches for estimation of reference evapotranspiration in various climatic regions. Theoretical and Applied Climatology, 139(3–4), (2019) 1459–1477. https://doi.org/10.1007/s00704-019-03007-3
  30. E.H. Chouaib, B. Salwa, K. Saïd, C. Abdelghani. Early estimation of daily reference evapotranspiration using machine learning techniques for efficient management of irrigation water. Journal of Physics Conference Series, 2224(1), (2022) 012006. https://doi.org/10.1088/1742-6596/2224/1/012006
  31. F. Granata, R. Gargano, G. De Marinis. Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. The Science of the Total Environment, 703, (2019) 135653. https://doi.org/10.1016/j.scitotenv.2019.135653
  32. A. Ayaz, M. Rajesh, S.K. Singh, S. Rehana. Estimation of reference evapotranspiration using machine learning models with limited data. AIMS Geosciences, 7(3), (2021) 268–290. https://doi.org/10.3934/geosci.2021016
  33. L. Wu, Y. Peng, J. Fan, Y. Wang, Y. (2019). Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data. Hydrology Research, 50(6), 1730–1750. https://doi.org/10.2166/nh.2019.060
  34. J. Fan, W. Yue, L. Wu, F. Zhang, H. Cai, X. Wang, X. Lu, Y. Xiang. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, (2018) 225–241. https://doi.org/10.1016/j.agrformet.2018.08.019
  35. B. Petković, D. Petković, B. Kuzman, M. Milovančević, K. Wakil, L.S. Ho, K. Jermsittiparsert. Neuro-fuzzy estimation of reference crop evapotranspiration by neuro fuzzy logic based on weather conditions. Computers and Electronics in Agriculture, 173, (2020) 105358. https://doi.org/10.1016/j.compag.2020.105358
  36. R.T.G. Del Cerro, M. Subathra, N.M. Kumar, S. Verrastro, S.T. George. Modelling the daily reference evapotranspiration in semi-arid region of South India: A case study comparing ANFIS and empirical models. Information Processing in Agriculture, 8(1), (2020) 173–184. https://doi.org/10.1016/j.inpa.2020.02.003
  37. M.M. Reis, A.J. Da Silva, J. Zullo, L.D.T. Junior, Santos, A.M. Azevedo, E.M.G. Lopes. Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Computers and Electronics in Agriculture, 165, (2019) 104937. https://doi.org/10.1016/j.compag.2019.104937
  38. J. Shiri, A.H. Nazemi, A.A. Sadraddini, P. Marti, A.F. Fard, O. Kisi, G. Landeras. Alternative heuristics equations to the Priestley–Taylor approach: assessing reference evapotranspiration estimation. Theoretical and Applied Climatology, 138(1–2), (2019) 831–848. https://doi.org/10.1007/s00704-019-02852-6
  39. L.B. Ferreira, F.F. Da Cunha, R.A. De Oliveira, E.I.F. Filho. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – A new approach. Journal of Hydrology, 572, (2019) 556–570. https://doi.org/10.1016/j.jhydrol.2019.03.028
  40. B. Keshtegar, O. Kisi, M. Zounemat-Kermani, Polynomial chaos expansion and response surface method for nonlinear modelling of reference evapotranspiration. Hydrological Sciences Journal, 64(6), (2019) 720–730. https://doi.org/10.1080/02626667.2019.1601727
  41. V. Nourani, G. Elkiran, J. Abdullahi. Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements. Journal of Hydrology, 577, (2019) 123958. https://doi.org/10.1016/j.jhydrol.2019.123958
  42. S. Hou, F. Hua, W. Lv, Z. Wang, Y. Liu, G. Wang. Hybrid modeling of flotation height in air flotation oven based on selective bagging ensemble method. Mathematical Problems in Engineering, 2013, (2013) 1–9. https://doi.org/10.1155/2013/281523
  43. M. Guermoui, S. Benkaciali, K. Gairaa, K. Bouchouicha, T. Boulmaiz, J.W. Boland. A novel ensemble learning approach for hourly global solar radiation forecasting. Neural Computing and Applications, 34(4), (2021) 2983–3005. https://doi.org/10.1007/s00521-021-06421-9
  44. A. Bijlwan, S. Pokhriyal, R. Ranjan, R.K. Singh, A. Jha. Machine learning methods for estimating reference evapotranspiration. Journal of Agrometeorology, 26(1), (2024) 63–68. https://doi.org/10.54386/jam.v26i1.2462
  45. D. Yang, S. Yang, J. Huang, S. Zhang, S. Zhang, J. Zhang, Y. Bai. Improving time upscaling of instantaneous evapotranspiration based on machine learning models. Big Earth Data, 9(1), (2024) 127–154. https://doi.org/10.1080/20964471.2024.2423431
  46. P. Guo, J. Cao, J. Lin. Establishment of a reference evapotranspiration-forecasting model based on machine learning. Agronomy, 14(5), (2024) 939. https://doi.org/10.3390/agronomy14050939
  47. Y. Zhao, H. Dong, W. Huang, S. He, C. Zhang. Seamless terrestrial evapotranspiration estimation by machine learning models across the Contiguous United States. Ecological Indicators, 165, (2024) 112203. https://doi.org/10.1016/j.ecolind.2024.112203
  48. A. Ahmadi, M.H. Kazemi, A. Daccache, R.L. Snyder. SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation. Agricultural Water Management, 295, (2024) 108779. https://doi.org/10.1016/j.agwat.2024.108779
  49. Y. Zhang, Z. Zhao, J. Zheng. CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China. Journal of Hydrology, 588, (2020) 125087. https://doi.org/10.1016/j.jhydrol.2020.125087
  50. J.N. Van Rijn, F. Hutter. Hyperparameter importance across datasets. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (2018) 2367-2376. https://doi.org/10.1145/3219819.3220058
  51. P. Probst, M.V. Wright, A. Boulesteix. Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 9, (2019) e1301. https://doi.org/10.1002/widm.1301
  52. R. Khalid, N. Javaid. A survey on hyperparameters optimization algorithms of forecasting models in smart grid. Sustainable Cities and Society, 61, (2020) 102275. https://doi.org/10.1016/j.scs.2020.102275
  53. D. Molina, J. Poyatos, J. Del Ser, S. García, A. Hussain, F. Herrera. Comprehensive Taxonomies of nature- and bio-inspired optimization: Inspiration versus Algorithmic Behavior, Critical Analysis Recommendations. Cognitive Computation, 12(5), (2020) 897–939. https://doi.org/10.1007/s12559-020-09730-8
  54. S. Mirjalili, S.M. Mirjalili, A. Lewis. Grey Wolf Optimizer. Advances in Engineering Software, 69, (2014) 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  55. S. Shadravan, H. Naji, V. Bardsiri. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, (2019) 20–34. https://doi.org/10.1016/j.engappai.2019.01.001
  56. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, (2017) 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002
  57. S. Mirjalili, A. Lewis. The whale Optimization Algorithm. Advances in Engineering Software, 95, (2016) 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  58. H. Li, X. Liu, Z. Huang, C. Zeng, P. Zou, Z. Chu, J. Yi. Newly emerging Nature-Inspired optimization - algorithm review, unified framework, evaluation, and behavioural parameter optimization. IEEE Access, 8, (2020) 72620–72649. https://doi.org/10.1109/ACCESS.2020.2987689
  59. V.H. Quej, C. De La Cruz Castillo, J. Almorox, B. Rivera-Hernandez. Evaluation of artificial intelligence models for daily prediction of reference evapotranspiration using temperature, rainfall and relative humidity in a warm sub-humid environment. Italian Journal of Agrometeorology, 1, (2022) 49–63. https://doi.org/10.36253/ijam-1373
  60. A. Adib, S.S.O. Kalantarzadeh, M.M. Shoushtari, M. Lotfirad, A. Liaghat, M. Oulapour. (2023). Sensitive analysis of meteorological data and selecting appropriate machine learning model for estimation of reference evapotranspiration. Applied Water Science, 13, 83. https://doi.org/10.1007/s13201-023-01895-5
  61. M.E. Akiner, M. Ghasri. Comparative assessment of deep belief network and hybrid adaptive neuro-fuzzy inference system model based on a meta-heuristic optimization algorithm for precise predictions of the potential evapotranspiration. Environmental Science and Pollution Research, 31(30), (2024) 42719–42749. https://doi.org/10.1007/s11356-024-33987-3
  62. H. Tao, L. Diop, A. Bodian, K. Djaman, P.M. Ndiaye, Z.M. Yaseen. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agricultural Water Management, 208, (2018) 140–151. https://doi.org/10.1016/j.agwat.2018.06.018
  63. L. Zhao, Y. Wang, Y. Shi, X. Zhao, N. Cui, S. Zhang. Selecting essential factors for predicting reference crop evapotranspiration through tree-based machine learning and Bayesian optimization. Theoretical and Applied Climatology, 155(4), (2023) 2953–2972. https://doi.org/10.1007/s00704-023-04760-2
  64. A. Elbeltagi, O.M. Katipoğlu, V. Kartal, A.D. Mehr, S. Berhail, E.A. Elsadek. Advanced reference crop evapotranspiration prediction: a novel framework combining neural nets, bee optimization algorithm, and mode decomposition. Applied Water Science, 14, (2024) 256. https://doi.org/10.1007/s13201-024-02308-x
  65. Y. Han, J. Wu, B. Zhai, Y. Pan, G. Huang, L. Wu, W. Zeng. Coupling a Bat Algorithm with XGBoost to Estimate Reference Evapotranspiration in the Arid and Semiarid Regions of China. Advances in Meteorology, 2019, (2019) 1–16. https://doi.org/10.1155/2019/9575782
  66. S. Yan, L. Wu, J. Fan, F. Zhang, Y. Zou, Y. Wu. A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China. Agricultural Water Management, 244, (2020) 106594. https://doi.org/10.1016/j.agwat.2020.106594
  67. D. Wolpert, W. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), (1997) 67–82. https://doi.org/10.1109/4235.585893
  68. W. Khan, M. Jamshed, S. Fatima. Contribution of agriculture in economic growth: A case study of West Bengal (India). Journal of Public Affairs, 20, (2019) e2031. https://doi.org/10.1002/pa.2031
  69. S. Sahoo, S. Chakraborty, Q.B. Pham, E. Sharifi, S.S. Sammen, M. Vojtek, J. Vojteková, I. Elkhrachy, R. Costache, N.T.T. Linh. Recognition of district-wise groundwater stress zones using the GLDAS-2 catchment land surface model during lean season in the Indian state of West Bengal. Acta Geophysica, 69(1), (2021) 175–198. https://doi.org/10.1007/s11600-020-00509-x
  70. A. Géron. (2017) Hands-on Machine Learning with Scikit-Learn and TensorFlow, O'Reilly Media, USA.
  71. P. Dangeti, P. (2017) Statistics for Machine Learning, Packt Publishing Ltd.
  72. J.H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, (2001) 1189-1232. https://doi.org/10.1214/aos/1013203451
  73. T. Chen, C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, (2016) 785-794. https://doi.org/10.1145/2939672.2939785
  74. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.Y. Liu. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
  75. L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin. CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, (2018) 31.
  76. V.K. Ayyadevara. Pro Machine Learning Algorithms, Apress: Berkeley, CA, USA, (2018) 283-297.
  77. A.A. Taha, S.J. Malebary. An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine. IEEE Access, 8, (2020) 25579–25587. https://doi.org/10.1109/ACCESS.2020.2971354
  78. Y. Wei, Z. Xing, C. Jian, W. Kangda, W. Shifan, K. Chiam. Use of tree-based machine learning methods for stratigraphic classification in 3D geological modelling, IOP Conference Series: Earth and Environmental Science, 861(7), (2021) 072039. https://doi.org/10.1088/1755-1315/861/7/072039
  79. J. Nayak, B. Naik, P.B. Dash, A. Souri, V. Shanmuganathan. Hyper-parameter tuned light gradient boosting machine using memetic firefly algorithm for hand gesture recognition. Applied Soft Computing, 107, (2021) 107478. https://doi.org/10.1016/j.asoc.2021.107478
  80. N. Ngo, T.T.H. Truong, N. Truong, A. Pham, N. Huynh, T.M. Pham, V.H.S. Pham. Proposing a hybrid metaheuristic optimization algorithm and machine learning model for energy use forecast in non-residential buildings. Scientific Reports, 12, (2022) 1065. https://doi.org/10.1038/s41598-022-04923-7
  81. D. Markovics, M.J. Mayer. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable and Sustainable Energy Reviews, 161, (2022) 112364. https://doi.org/10.1016/j.rser.2022.112364
  82. L. Yin, F. Tao, Y. Chen, F. Liu, J. Hu. Improving terrestrial evapotranspiration estimation across China during 2000–2018 with machine learning methods. Journal of Hydrology, 600, (2021) 126538. https://doi.org/10.1016/j.jhydrol.2021.126538
  83. D. Althoff, S.H.B. Dias, R. Filgueiras, L.N. Rodrigues. ETO‐Brazil: A daily gridded reference evapotranspiration data set for Brazil (2000–2018). Water Resources Research, 56(7), (2020). https://doi.org/10.1029/2020WR027562
  84. T. Dutta, S. Bhattacharyya, S. Dey, J. Platos. Border Collie optimization. IEEE Access, 8, (2020) 109177–109197. https://doi.org/10.1109/ACCESS.2020.2999540
  85. X. Lu, J. Fan, N. LifengWu, J. Dong. Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with GreyWolf Optimization Algorithm. Computer Modeling in Engineering & Sciences, 125(2), (2020) 699–723. https://doi.org/10.32604/cmes.2020.011004