Abstract

A hybrid nanocomposite of zinc vanadate/cobalt oxide (Zn3(VO4)2/CoO at ratios of 90/10, 80/20, 50/50, and 20/80) was obtained using a simple co-precipitation technique, then calcinated for 4 hrs at 400°C. The surface morphological, vibrational, and structural characteristics of the synthesized hybrid nanocomposites were examined. According to the structural study, orthorhombic Zn3(VO4)2 and cubic crystal systems of CoO with space groups Fm-3m were formed. The functional groups of Zinc Vanadate/Cobalt Oxide were examined using FTIR spectroscopy. A scanning electron microscopy (SEM) study reveals the nanosheets structures with the size of 200 nm. The chemical composition and formation of the Zn3(VO4)2/CoO composites were confirmed using X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the hybrid nanocomposites was assessed through CV, GCD and impedance analysis. Among the nanocomposites, Zn3(VO4)2/CoO 80/20 exhibited a high specific capacitance value of 564.36 Fg-1 and retaining 97% of their total capacitance even after 3000 cycles.

Keywords

Zinc Vanadate, Cobalt Oxide, Supercapacitor, Energy storage applications,

Downloads

Download data is not yet available.

References

  1. C. Sengottaiyan, R. Jayavel, R.G. Shrestha, T. Subramani, S. Maji, J.H Kim, J.P.Hill, K. Ariga, and L. K. Shrestha, Indium oxide/carbon nanotube/reduced graphene oxide ternary nanocomposite with enhanced electrochemical supercapacitance. Bulletin of the Chemical Society of Japan, 92(3), (2019) 521-528. https://doi.org/10.1246/bcsj.20180338
  2. R. Kötz, M.J.E.A. Carlen, Principles and applications of electrochemical capacitors. Electrochimica acta, 45(15-16), (2000) 2483-2498. https://doi.org/10.1016/S0013-4686(00)00354-6
  3. N. Hassan, J. Riaz, M.T. Qureshi, A. Razaq, M. Rahim, A.M. Toufq, A. Shakoor, Vanadium oxide (V2O3) for energy storage applications through hydrothermal route. Journal of Materials Science: Materials in Electronics, 29, (2018) 16021-16026. https://doi.org/10.1007/s10854-018-9689-5
  4. S. Chaudhary, L.S. James, A.B.V. KiranKumar, C.H.V.V. Ramana, D.K. Mishra, S. Thomas, D. Kim, Reduced graphene oxide/ZnO nanorods nanocomposite: structural, electrical and electrochemical properties. Journal of Inorganic and Organometallic Polymers and Materials, 29, (2019) 2282-2290.https://doi.org/10.1007/s10904-019-01172-6
  5. L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical society reviews, 38(9), (2009) 2520-2531. https://doi.org/10.1039/b813846j
  6. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin and Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Advanced science, 5(1), (2018) 1700322. https://doi.org/10.1002/advs.201700322
  7. A. Numan, Y. Zhan, M. Khalid and M. Hatamvand, Chapter three - introduction to supercapattery. Advances in Supercapacitor and Supercapattery, (2021) 45-61. https://doi.org/10.1016/B978-0-12-819897-1.00008-2
  8. M. Mayakannan, E. Vinoth, S. Prabakar. Synthesis and Structural, Optical Properties of Cadmium Doped Cobalt Oxide Nanoparticles. International Research Journal of Multidisciplinary Technovation. 3(3), (2021) 32-37. https://doi.org/10.34256/irjmt2135
  9. H Li, Y Liu, S Lin, H Li, Z Wu, L Zhu, C Li, X Wang, X Zhu, Y Sun, Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors. Journal of Power Sources, 497, (2021) 229882. https://doi.org/10.1016/j.jpowsour.2021.229882
  10. W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, E.R. Ezeigwe, Recent development of mixed transition metal oxide and graphene/mixed transition metal oxidebased hybrid nanostructures for advanced supercapacitors. Journal of Alloys and Compounds, 775, (2019) 1324-1356. https://doi.org/10.1016/j.jallcom.2018.10.102
  11. C.V.V.M. Gopi, R. Vinodh, S. Sambasivam, I.M. Obaidat, H.J. Kim, Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. Journal of energy storage, 27, (2020) 101035. https://doi.org/10.1016/j.est.2019.101035
  12. B.O. Park, C.D. Lokhande, H.S. Park, K.D. Jung, K. D., O.S. Joo, Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness. Journal of power sources, 134(1), (2004) 148-152. https://doi.org/10.1016/j.jpowsour.2004.02.027
  13. J. Yao, Y. Li, R.C. Massé, E. Uchaker, G. Cao. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Materials, 11, (2018) 205-259. https://doi.org/10.1016/j.ensm.2017.10.014
  14. K. Cao, T Jin, L. Yang, L. Jiao. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Materials Chemistry Frontiers, 1(11), (2017) 2213-2242. https://doi.org/10.1039/C7QM00175D
  15. X. Zhang, C Jiang, J. Liang, W. Wu. Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. Journal of Materials Chemistry A, 9(13), (2021) 8099-8128. https://doi.org/10.1039/D0TA12299H
  16. W.H. Low, P.S. Khiew, S.S. Lim, C. W. Siong, E.R. Ezeigwe, Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors. Journal of Alloys and Compounds, 775 (2019) 1324-1356. https://doi.org/10.1016/j.jallcom.2018.10.102
  17. L.N. Ramavathu, S.R. Harapanahalli, N. Pernapati, B.N. Tumma. Synthesis and characterization of Nickel Metavanadate (Ni3V2O8) - application as photocatalyst and supercapacitor. International Journal of Nano Dimension, 12(4), (2021) 411-421.
  18. B. Suganya, S. Maruthamuthu, J. Chandrasekaran, B. Saravanakumar, E. Vijayakumar, R. Marnadu, Abdullah M. Al-Enizi, Mohd Ubaidullah, Design of zinc vanadate (Zn3V2O8)/Nitrogen doped Multiwall Carbon Nanotubes (N-MWCNT) towards supercapacitor electrode applications. Journal of Electroanalytical Chemistry, 881, (2021) 114936. https://doi.org/10.1016/j.jelechem.2020.114936
  19. S.A. Mane, P.K. Bhoj, A.V. Moholkar, A. V. Ghule, (2024). Green and Facile Synthesis of Zn3V2O8− Ag@ C Composite as an Efficient Electrode for Supercapacitor Application. ChemistrySelect, 9(9), (2024) e202305175. https://doi.org/10.1002/slct.202305175
  20. S.E. Arasi, P. Devendran, R. Ranjithkumar, S. Arunpandiyan, A. Arivarasan, Electrochemical property analysis of zinc vanadate nanostructure for efficient supercapacitors. Materials Science in Semiconductor Processing, 106, (2020) 104785. https://doi.org/10.1016/j.mssp.2019.104785
  21. T.C. Liu, W.G. Pell, B.E. Conway, Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochimica acta, 44(17), (1999) 2829-2842. https://doi.org/10.1016/S0013-4686(99)00002-X
  22. C. Lin, J.A. Ritter, B.N. Popov, Characterization of sol‐gel‐derived cobalt oxide xerogels as electrochemical capacitors. Journal of the Electrochemical Society, 145(12), (1998) 4097. https://doi.org/10.1149/1.1838920
  23. X.F. Wang, Z. You, D.B. Ruan, A hybrid metal oxide supercapacitor in aqueous KOH electrolyte. Chinese Journal of Chemistry, 24(9), (2006) 1126-1132. https://doi.org/10.1002/cjoc.200690212
  24. V. Srinivasan, J.W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation. Journal of power sources, 108(1-2), (2002) 15-20. https://doi.org/10.1016/S0378-7753(01)01012-6
  25. H.K. Kim, T.Y. Seong, J.H. Lim, W.I. Cho, Y.S. Yoon, Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors. Journal of power sources, 102(1-2), (2001) 167-171. https://doi.org/10.1016/S0378-7753(01)00864-3
  26. J. Tang, S. Ni, B. Zhou, D. Chao, T. Li, X. Yang, Theoretical calculation and experimental verification of Zn3V3O8 as an insertion type anode for LIBs, Journal of Alloys and Compounds, 730, (2018) 228-233. https://doi.org/10.1016/j.jallcom.2017.09.197
  27. M Wang, Y Shi and G Jiang. 3D hierarchical Zn3(OH)2V2O7⋅2H2O and Zn3(VO4)2 microspheres: Synthesis, characterization and photoluminescence. Materials Research Bulletin, 47(1), (2012) 18-23.https://doi.org/10.1016/j.materresbull.2011.10.020
  28. L. Estepa, M. Daudon, Contribution of Fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy, 3(5), (1997) 347-369. https://doi.org/10.1002/(SICI)1520-6343(1997)3:5%3C347::AID-BSPY3%3E3.0.CO;2-%23
  29. S.H. Wu, D.H. Chen, Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. Journal of Colloid and Interface Science, 259(2), (2003) 282-286. https://doi.org/10.1016/S0021-9797(02)00135-2
  30. J. Bai, X. Li, G. Liu,Y. Qian, S. Xiong, Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high‐rate and ultralong‐life lithium‐ion battery anode material. Advanced Functional Materials, 24(20), (2014) 3012-3020. https://doi.org/10.1002/adfm.201303442
  31. F.K. Butt, C. Cao, Q. Wan, P.Li, FaryalIdrees, M. Tahir, W.S. Khan, Z. Ali, M.J.M. Zapata, M. Safdar, X. Qub, Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: A prospective material for energy storage. International Journal of Hydrogen Energy, 39, (2014) 842−7851. https://doi.org/10.1016/j.ijhydene.2014.03.033
  32. S.D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J.P. Ferraris, Y.J. Chabal, K.J. Balkus Jr, Vanadium oxide nanowire–carbon nanotube binder‐free flexible electrodes for supercapacitors. Advanced Energy Materials, 1(5), (2011) 936-945. https://doi.org/10.1002/aenm.201100221
  33. N.V. Hoa, T.T.H. Quyen, N.H. Nghia, N.V. Hieu, J.J. Shim, In situ growth of flower-like V2O5 arrays on graphene@nickel foam as high-performance electrode for supercapacitors. Journal of Alloys and Compounds, 702 (2017) 693-699. https://doi.org/10.1016/j.jallcom.2017.01.241
  34. J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. Journal of the American Chemical Society, 137 (2015) 1572- 1580. https://doi.org/10.1021/ja511539a
  35. W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, C.H. Chia, E.R. Ezeigwe, Facile synthesis of graphene-Zn3VO8 nanocomposite as a high-performance electrode material for symmetric supercapacitor. Journal of Alloys and Compounds. 784, (2019) 847-858. https://doi.org/10.1016/j.jallcom.2019.01.137
  36. T.F. Qin, S.L. Peng, J.X. Hao, Y.X. Wen, Z.L. Wang, X.F. Wang, D.Y. He, J.C. Zhang, J. Hou, G.Z. Cao, Flexible and Wearable All-Solid-State Supercapacitors with Ultrahigh Energy Density Based on a Carbon Fiber Fabric Electrode. Advanced Energy Materials, 20 (2017) 1700409. https://doi.org/10.1002/aenm.201700409
  37. L. Niu, Y. Wang, F. Ruan, C. Shen, S. Shan, M. Xu, Z. Sun, C. Li, X. Liu, Y. Gong, In situ growth of NiCo2S4@Ni3V2O8 on Ni foam as a binder-free electrode for asymmetric supercapacitors, All images. Journal of Materials Chemistry A, 4, (2016) 5669. https://doi.org/10.1039/C6TA00078A
  38. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 29, (2017) 1605336. https://doi.org/10.1002/adma.201605336
  39. L. Wei, M. Sevilla, A. B. Fuertesc, R. Mokaya, G. Yushin, Hydrothermal carbonisation of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Advanced Energy Materials, 1, (2011) 356-361. https://doi.org/10.1002/aenm.201100019
  40. Y. Yu, C. Niu, C. Han, K. Zhao, J. Meng, X. Xu, P. Zhang, L. Wang, Y. Wu, L. Mai, Zinc Pyrovanadate Nanoplates Embedded in Graphene Networks with Enhanced Electrochemical Performance. Industrial & Engineering Chemistry Research, 55, (2016) 2992-2999. https://doi.org/10.1021/acs.iecr.5b04811
  41. M. Dhananjaya, A. Lakshmi Narayana, N. Guru Prakash, P. Rosaiah, O.M. Hussain, intertwining network structured VnO2n+1-CNT/GO nanocomposite electrodes for supercapacitors. Materials Chemistry and Physics, 37, (2019) 121825. https://doi.org/10.1016/j.matchemphys.2019.121825
  42. S. Ramesh, S. Khandelwal, K.Y. Rhee, D. Hui, Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Composites Part B: Engineering, 138, (2018) 45-54. https://doi.org/10.1016/j.compositesb.2017.11.024
  43. K. Thiagarajan, J. Theerthagiri, R.A. Senthil, P. Arunachalam, J. Madhavan, M. A. Ghanem, Synthesis of Ni3V2O8@graphene oxide nanocomposite as an efficient electrode material for supercapacitor applications. Journal of Solid-State Electrochemistry, 22, (2018) 527-536. https://doi.org/10.1007/s10008-017-3788-8
  44. P. He, M.Y. Yan, G.B. Zhang, R.M. Sun, L.N. Chen, Q.Y. An, L.Q. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Advanced Energy Materials, 11 (2017) 1601920. https://doi.org/10.1002/aenm.201601920
  45. M.S.M. Saleem, R. Swaminathan, V. Mohan, N. U. H. L. Ali, S.J. Kim, Sulfurization of cobalt oxide to cobalt sulfide: A positrode for the high-performance supercapacitor. Journal of Industrial and Engineering Chemistry, (2024). https://doi.org/10.1016/j.jiec.2024.02.038
  46. A. Chowdhury, R. Shukla, V. Sharma, S. Neogy, A. Chandra, V. Grover, A.K. Tyagi, controlling reaction kinetics of layered zinc vanadate having brucitelike ZneO layers supported by pyrovanadate pillars for use in supercapacitors. Journal of Alloys and Compounds, 829, (2020) 154479. https://doi.org/10.1016/j.jallcom.2020.154479
  47. B. Suganya, J. Chandrasekaran, S. Maruthamuthu, B. Saravanakumar, E. Vijayakumar, Hydrothermally Synthesized Zinc Vanadate Rods for Electrochemical Supercapacitance Analysis in Various Aqueous Electrolytes. Journal of Inorganic and Organometallic Polymers and Materials, 30, (2020) 4510-4519. https://doi.org/10.1007/s10904-020-01581-y
  48. Y. Li, Y. Teng, Z. Zhang, Y. Feng, P. Xue, W. Tonga, Xiaoyang Liu, Microwave-assisted Synthesized of Novel Nanostructured Zn3(OH)2V2O7·2H2O and Zn2V2O7 as Electrode Materials for Supercapacitors. New Journal of Chemistry, 41, (2017) 15298-15304. https://doi.org/10.1039/C7NJ03262E
  49. S. Vijayakumar, S-H. Lee, K-S. Ryu, Synthesis of Zn3V2O8 nanoplatelets for lithium-ion battery and supercapacitor applications, RSC Advances, 5, (2015) 91822-91828. https://doi.org/10.1039/C5RA13904J
  50. S. Rajkumar, E. Elanthamilan, J. Princy Merlin, Facile Synthesis of Zn3V2O8 Nanostructured material and its Enhanced Supercapacitive Performance. Journal of Alloys and Compounds, 861, (2021) 157939. https://doi.org/10.1016/j.jallcom.2020.157939
  51. B. Suganya, S. Maruthamuthu, J. Chandrasekaran, B. Saravanakumar, E. Vijayakumar, R. Marnadu, H. Elhosiny Ali, Tien Dai Nguyen, Nitrogen doped 2D graphene/Zn3V2O8 nanocomposite with enhanced supercapacitive features, Surfaces and Interfaces, 24, (2021) 101129. https://doi.org/10.1016/j.surfin.2021.101129
  52. N. Venugopal, W-S. Kim, New α-Zn2V2O7/carbon nanotube nanocomposite for supercapacitors, Korean Journal of Chemical Engineering volume 2015, 32, 1918-1923. https://doi.org/10.1007/s11814-014-0392-9
  53. S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande, Preparation of cobalt oxide thin films and its use in supercapacitor application. Applied Surface Science, 254(17), (2008) 5540-5544. https://doi.org/10.1016/j.apsusc.2008.02.163
  54. S.G. Kandalkar, D.S. Dhawale, C.K. Kim, C.D. Lokhande, Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synthetic Metals, 160(11-12), (2010) 1299-1302. https://doi.org/10.1016/j.synthmet.2010.04.003
  55. A. Numan, N. Duraisamy, F.S. Omar, Y.K. Mahipal, K. Ramesh, S. Ramesh, enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC advances, 6(41), (2016) 34894-34902. https://doi.org/10.1039/C6RA00160B
  56. B. Sarma, R.S. Ray, S.K. Mohanty, M. Misra, Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition. Applied Surface Science, 300, (2014) 29-36. https://doi.org/10.1016/j.apsusc.2014.01.186
  57. R. Kumar, S. Sahoo, W.K. Tan, G. Kawamura, A. Matsuda, K.K. Kar, Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor. Journal of Energy Storage, 40, (2021) 102724. https://doi.org/10.1016/j.est.2021.102724
  58. R. Packiaraj, P. Devendran, S. Asath Bahadur, N. Nallamuthu, Structural and electrochemical studies of Scheelite type BiVO4 nanoparticles: synthesis by simple hydrothermal method. Journal of Materials Science: Materials in Electronics, 29, (2018) 13265-13276, https://doi.org/10.1007/s10854-018-9450-0
  59. X. He, X. Zhang, A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials. Journal of energy storage, 56, (2022) 106023. https://doi.org/10.1016/j.est.2022.106023
  60. A. Shameem, P. Devendran, V. Siva, R. Packiaraj, N. Nallamuthu, S. Asath Bahadur, Electrochemical performance and optimization of α-NiMoO4 by different facile synthetic approach for supercapacitor application. Journal of Materials Science: Materials in Electronics, 30 (2019) 3305-3315. https://doi.org/10.1007/s10854-018-00603-3
  61. Muktikanta Panigrahi, Investigation of Electrochemical Performance of PmAP/WO3 Composite. International Research Journal of Multidisciplinary Technovation, 4(5) 2022 1-7. https://doi.org/10.54392/irjmt2251
  62. R. Muruganantham, I.V.B. Maggay, L.M.Z. De Juan, M.T. Nguyen, T. Yonezawa, C.-H. Lin, Y.-G. Lin, W.-R. Liu, Electrochemical exploration of the effects of calcination temperature of a mesoporous zinc vanadate anode material on the performance of Na-ion batteries, Inorganic Chemistry Frontiers, 6, (2019) 2653-2659. https://doi.org/10.1039/C9QI00494G