Abstract
Plants have long been recognized as natural sources of therapeutic compounds, with their various parts, including flowers, being used in traditional treatments for centuries. Flowers, in particular, have captivated humans with their beauty. However, the classification and identification of specific flowers for therapeutic use can be challenging using conventional methods. Researchers have turned to modern tools like cameras and computers to aid in this process. Despite their limitations, the need for more efficient and accurate methods has led to the exploration of artificial intelligence (AI). This study seeks to evaluate various AI-based methods utilized by researchers in the field of flower analysis, highlighting their strengths and weaknesses to inform future research. The advanced analytical tools available today are instrumental in creating a chemical fingerprint of flowers. Chromatographic and spectroscopic techniques, used to determine precise chemical composition, offer valuable scientific insights into traditional medicine. Plant part identification often commences with feature extraction. Any plant part is digitally captured multiple times and subjected to different feature extraction methods. Common basic features include color, texture, and shape, while deep learning features like CNNs are also employed. We analyze and review diverse approaches reported in recent literature, examining their advantages and potential applications.
Keywords
Flower Identification, Machine Learning, Convolutional Neural Network, Artificial Intelligence, Chemical Finger Print Analysis,Downloads
References
- A. Altemimi, N. Lakhssassi, A. Baharlouei, D.G. Watson, D.A. Lightfoot, Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), (2017) 42. https://doi.org/10.3390/plants6040042
- S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D. Stefanovic, Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience, 2016(1), (2016) 3289801. https://doi.org/10.1155/2016/3289801
- V. Singh, A.K. Misra, Detection of plant leaf diseases using image segmentation and soft computing techniques. Information processing in Agriculture, 4(1), (2017) 41-49. https://doi.org/10.1016/j.inpa.2016.10.005
- J. Waldchen, P. Mader, Plant species identification using computer vision techniques: a systematic literature review. Archives of computational methods in engineering, 25, (2018) 507-543. https://doi.org/10.1007/s11831-016-9206-z
- U. Anand, N. Jacobo-Herrera, A. Altemimi, N. Lakhssassi, A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites, 9(11), (2019) 258. https://doi.org/10.3390/metabo9110258
- M. Huang, Y. Xu, Image classification of Chinese medicinal flowers based on convolutional neural network. Mathematical Biosciences and Engineering: MBE, 20(8), (2023) 14978-14994. https://doi.org/10.3934/mbe.2023671
- R. Yamashita, M. Nishio, R.K.G. Do, K. Togashi, Convolutional neural networks: an overview and application in radiology. Insights into imaging, 9, (2018) 611-629. https://doi.org/10.1007/s13244-018-0639-9
- R. Azadnia, M.M. Al-Amidi, H. Mohammadi, M.A. Cifci, A. Daryab, E. Cavallo, An AI based approach for medicinal plant identification using deep CNN based on global average pooling. Agronomy, 12(11), (2022) 2723. https://doi.org/10.3390/agronomy12112723
- R. Azadnia, A. Jahanbakhshi, S. Rashidi, P. Bazyar, Developing an automated monitoring system for fast and accurate prediction of soil texture using an image-based deep learning network and machine vision system. Measurement, 190, (2022) 110669. https://doi.org/10.1016/j.measurement.2021.110669
- O.E. Apolo-Apolo, M. Pérez-Ruiz, J. Martinez-Guanter, J. Valente, A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique. Frontiers in plant science, 11, (2020) 1086. https://doi.org/10.3389/fpls.2020.01086
- K.P. Ferentinos, Deep learning models for plant disease detection and diagnosis. Computers and electronics in agriculture, 145, (2018) 311-318. https://doi.org/10.1016/j.compag.2018.01.009
- P. Ziyaee, V. Farzand Ahmadi, P. Bazyar, E. Cavallo, Comparison of different image processing methods for segregation of peanut (Arachis hypogaea L.) seeds infected by aflatoxin-producing fungi. Agronomy, 11(5), (2021) 873. https://doi.org/10.3390/agronomy11050873
- E. Amenu, (2007) Use and management of medicinal plants by indigenous people of Ejaji area (Chelya Woreda) West Shoa, Addis Ababa, Ethiopia.
- R. Hu, C. Lin, W. Xu, Y. Liu, C. Long, Ethnobotanical study on medicinal plants used by Mulam people in Guangxi, China. Journal of ethnobiology and ethnomedicine, 16, (2020) 1-50. https://doi.org/10.1186/s13002-020-00387-z
- G. Crini, E. Lichtfouse, G. Chanet, N. Morin-Crini, Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environmental Chemistry Letters, 18(5), (2020) 1451-1476. https://doi.org/10.1007/s10311-020-01029-2
- S.F. Nabavi, A. Di Lorenzo, M. Izadi, E. Sobarzo-Sánchez, M. Daglia, S.M. Nabavi, Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients, 7(9), (2015) 7729-7748. https://doi.org/10.3390/nu7095359
- M. Grzeszczuk, A. Stefaniak, E. Meller, G. Wysocka, Mineral composition of some edible flowers. Journal of Elementology, 23(1), (2018). https://doi.org/10.5601/jelem.2017.22.2.1352
- O. Rop, J. Mlcek, T. Jurikova, J. Neugebauerova, J. Vabkova, Edible flowers - a new promising source of mineral elements in human nutrition. Molecules, 17(6), (2012) 6672–6683. https://doi.org/10.3390/molecules17066672
- C. Tistaert, B. Dejaegher, Y.V. Heyden, Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Analytica Chimica Acta, 690(2), (2011) 148–161. https://doi.org/10.1016/j.aca.2011.02.023
- A.M. Gómez-Caravaca, R.M.Maggio, L. Cerretani, Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Analytica Chimica Acta, 913, (2016) 1–21. https://doi.org/10.1016/j.aca.2016.01.025
- Y.P. Huang, Z.W. Wu, R.H. Su, G.H. Ruan, F.Y. Du, G.K. Li, Current application of chemometrics in traditional Chinese herbal medicine research. Journal of Chromatography B, 1026, (2016) 27–35. https://doi.org/10.1016/j.jchromb.2015.12.050
- P. Kumari, Ujala, B. Bhargava, Phytochemicals from edible flowers: opening a new arena for healthy lifestyle. Journal of Functional Foods, 78, (2021) 104375. https://doi.org/10.1016/j.jff.2021.104375
- R. Azadnia, K. Kheiralipour, Recognition of leaves of different medicinal plant species using a robust image processing algorithm and artificial neural networks classifier. Journal of Applied Research on Medicinal and Aromatic Plants, 25, (2021) 100327. https://doi.org/10.1016/j.jarmap.2021.100327
- H.J. Vala, A. Baxi, A review on Otsu image segmentation algorithm. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2(2), (2013) 387-389. https://doi.org/10.4028/www.scientific.net/AMR.989-994.1959
- A. Jahanbakhshi, M. Momeny, M. Mahmoudi, Y.D. Zhang, Classification of sour lemons based on apparent defects using stochastic pooling mechanism in deep convolutional neural networks. Scientia Horticulturae, 263, (2020) 109133. https://doi.org/10.1016/j.scienta.2019.109133
- R.C. Gonzalez, R.E. Woods, (2007) Digital image processing. Pearson Prentice-Hall Inc, New Jersey.
- F.S. Santana, A.H.R. Costa, F.S. Truzzi, F.L. Silva, S.L. Santos, T.M. Francoy, A.M. Saraiva, A reference process for automating bee species identification based on wing images and digital image processing. Ecological informatics, 24, (2014) 248-260. https://doi.org/10.1016/j.ecoinf.2013.12.001
- A. Jumi, A. Zaenuddin, T. Mulyono, N. Hayati, Content based Image Retrieval To Identify Medicinal Plants using Shape and Color Features. International Journal of Engineering Research & Technology (IJERT), 10(12), (2021).
- O.A. Malik, N. Ismail, B.R. Hussein, U. Yahya, Automated real-time identification of medicinal plants species in natural environment using deep learning models—a case study from Borneo Region. Plants, 11(15), (2022)1952. https://doi.org/10.3390/plants
- B. Jahagirdar, D. Munot, N. Belhekar, K. Rajeswari, Identification of Indian Medicinal leaves using Convolutional Neural Networks. International Research Journal of Engineering and Technology, 8(11), (2021) 1503-1507.
- T.N. Quoc, V.T. Hoang, (2020) Medicinal Plant identification in the wild by using CNN. International Conference on Information and Communication Technology Convergence (ICTC), IEEE, Korea (South). https://doi.org/10.1109/ICTC49870.2020.9289480
- T.D. Dahigaonkar, R. Kalyane, Identification of ayurvedic medicinal plants by image processing of leaf samples. International Research Journal of Engineering and Technology (IRJET), 5(5), (2018) 351-355.
- G. Priyanga, A. Aravindh, K.I. Ashwin, V. Gnana Shekar, M. Manjunathan, Automated identification of medicinal plants using machine learning. International Journal of Creative Research Thoughts (IJCRT), 12(3), (2024).
- Y.Z. Liang, P. Xie, K. Chan, Quality control of herbal medicines. Journal of chromatography B, 812(1-2), (2004) 53-70. https://doi.org/10.1016/j.jchromb.2004.08.041
- D.D. Wanga, J. Liangb, W.Z. Yanga, J.J. Houa, M. Yanga, J. Daa, Y. Wang, B.H. Jianga, X. Liua, W.Y. Wua, D.A. Guoa, HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: NiuhuangShangqing pill as an example. Journal of Pharmaceutical and Biomedical Analysis, 89 (2014) 130–141. https://doi.org/10.1016/j.jpba.2013.10.042
- Y. Chen, W. Bicker, J. Wu, M.Y. Xie, W. Lindner, Ganoderma species discrimination by dual-mode chromatographic fingerprinting: A study on stationary phase effects in hydrophilic interaction chromatography and reduction of sample misclassification rate by additional use of reversed-phase chromatography. Journal of Chromatography A, 1217(8), (2010) 1255-1265. https://doi.org/10.1016/j.chroma.2009.12.024
- N.W. Zhang, D.I.N.G. Ming-Xing, L.I.U. Guo-Yan, S.O.N.G. Wei-Wei, C.H.A.I. Chun-Yan, Molecularly imprinted membrane-based sensor for the detection of chloramphenicol succinate residue in milk. Chinese Journal of Analytical Chemistry, 36(10), (2008) 1380-1384. https://doi.org/10.1016/S1872-2040(08)60074-2
- W. Liu, B. Zhang, Z. Xin, D. Ren, L. Yi, GC-MS fingerprinting combined with chemometric methods reveals key bioactive components in Acori tatarinowii rhizoma. International Journal of Molecular Sciences, 18(7), (2017) 1342. https://doi.org/10.3390/ijms18071342
- X.D. Liu, D.H. Yan, X.M. Deng, B. Zhao, X.Y. Xue, S.M. Wang, Y. Zhang, J. Men, Quality assessment of crude and processed LeonuriFructus by chemical and color analysis combined with chemometric method. Chinese Herbal Medicines, 10(4), (2018) 388-395. https://doi.org/10.1016/j.chmed.2018.07.006
- H. Sereshti, Z. Poursorkh, G. Aliakbarzadeh, S. Zarre, S. Ataolahi, An image analysis of TLC patterns for quality control of saffron based on soil salinity effect: A strategy for data (pre)-processing. Food chemistry, 239, (2018) 831-839. https://doi.org/10.1016/j.foodchem.2017.07.012
- T.X. Tang, W.Y. Guo, Y. Xu, S.M. Zhang, X.J. Xu, D.M. Wang, Z.M. Zhao, L.P. Zhua, D.P. Yanga, Thin-layer Chromatographic Identification of Chinese Propolis Using Chemometric Finger printing. Phytochemical Analysis, 25(3), (2014) 266-272.
- D. Zhu, D. Tan, Y.M. Xie, A.M. Wang, S.Y. Chen, Y.Y. Lan, Fingerprint analysis for TLC of GastrodiaeRhizoma from different habitats, Chinese Journal of Experimental Traditional Medical Formulae, 21, (2015) 75–78.
- X.Q. Zha, J.P. Luo, P. Wei, Identification and classification of Dendrobiumcandidum species by fingerprint technology with capillary electrophoresis. South African Journal of Botany, 75(2), (2009) 276–282. https://doi.org/10.1016/j.sajb.2009.02.002
- Y. Jiang, B. David, P.F. Tu, Y. Barbin, Recent analytical approaches in quality control of traditional Chinese medicines—a review. Analytica Chimica Acta, 657(1), (2010) 9–18. https://doi.org/10.1016/j.aca.2009.10.024
- Q.Y. Zhang, M. Ye, Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). Journal of Chromatography A, 1216(11), (2009) 1954–1969. https://doi.org/10.1016/j.chroma.2008.07.072
- M. Swartz, HPLC detectors: a brief review. Journal of Liquid Chromatography & Related Technologies, 33(9-12), (2010) 1130–1150. https://doi.org/10.1080/10826076.2010.484356
- M. Shi, G.X. Sun, Integrated evaluation of HPLC and UV fingerprints for the quality control of Danshen tablet by systematic quantified fingerprint method combined with antioxidant activity. Journal of Separation Science, 40, (2017) 1942–1952. https://doi.org/10.1002/jssc.201601330
- M. Sajewicz, D. Staszek, Ł. Wojtal, T. Kowalska, M. Hajnos, M. Waksmundzka-Hajnos, Binary HPLC-diode array detector and HPLC-evaporative light-scattering detector fingerprints of methanol extracts from the selected sage (Salvia) species. Journal of AOAC International, 94, (2011) 71–76. https://doi.org/10.1093/jaoac/94.1.71
- A. Bajoub, S. Medina-Rodríguez, M. Gómez-Romero, E.A. Ajal, M.G. Bagur-González, A. Fernández-Gutiérrez, A. Carrasco-Pancorbo, Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics. Food Chemistry, 215, (2017) 245–255. https://doi.org/10.1016/j.foodchem.2016.07.140
- K.A. Obisesan, A.M. Jiménez-Carvelo, L. Cuadros-Rodriguez, I. Ruisánchez, M.P. Callao, HPLC-UV and HPLC-CAD chromatographic data fusion for the authentication of the geographical origin of palm oil, Talanta. 170, (2017) 413–418. https://doi.org/10.1016/j.talanta.2017.04.035
- X.P. Chen, W. Li, X.F. Xiao, L.L. Zhang, C.X. Liu, Phytochemical and pharmacological studies on Radix Angelica sinensis. Chinese Journal of Natural Medicines, 11(6), (2013) 577–587. https://doi.org/10.1016/S1875-5364(13)60067-9
- J.J. Lu, Y.Y. Dang, M. Huang, W.S. Xu, X.P. Chen, Y.T. Wang, Anti-cancer properties of terpenoids isolated from RhizomaCurcumae – a review. Journal of Ethnopharmacol, 143(2), (2012) 406–411. https://doi.org/10.1016/j.jep.2012.07.009
- Y. Ni, M. Mei, S. Kokot. One- and two-dimensional gas chromatography–mass spectrometry and high performance liquid chromatography–diode-array detector fingerprints of complex substances: a comparison of classification performance of similar, complex RhizomaCurcumae samples with the aid of chemometrics. Analytica Chimica Acta, 712, (2012) 37–44. https://doi.org/10.1016/j.aca.2011.11.010
- Ł. Komsta, Chemometrics in fingerprinting by means of thin layer chromatography. Chromatography Research International, 2012, (2012), 893246. https://doi.org/10.1155/2012/893246
- M. Navarro-Reig, J. Jaumot, T.A. van Beek, G. Vivó-Truyols, R. Tauler, Chemometric analysis of comprehensive LC×LC-MS data: resolution of triacylglycerol structural isomers in corn oil. Talanta, 160, (2016) 624–635. https://doi.org/10.1016/j.talanta.2016.08.005
- R.C. Allen, S.C. Rutan, Semi-automated alignment and quantification of peaks using parallel factor analysis for comprehensive two-dimensional liquid chromatography–diode array detector data sets. Analytica Chimica Acta, 723, (2012) 7–17. https://doi.org/10.1016/j.aca.2012.02.019
- B. Schmidt, J.W. Jaroszewski, R. Bro, M. Witt, Combining PARAFAC analysis of HPLC-PDA profiles and structural characterization using HPLC-PDA-SPE-NMR-MS experiments: commercial preparations of St. John’s wort. Analytical Chemistry, 80(6), (2008) 1978–1987. https://doi.org/10.1021/ac702064p
- K.D. Tian, L.J. Wu, S.G. Min, R. Bro, Geometric search: a new approach for fitting PARAFAC2 models on GC-MS data, Talanta, 185, (2018) 378–386. https://doi.org/10.1016/j.talanta.2018.03.088
- C.G. Fraga, B.J. Prazen, R.E. Synovec, Objective data alignment and chemometric analysis of comprehensive two-dimensional separations with run-to-run peak shifting on both dimensions. Analytical Chemistry, 73(24), (2001) 5833–5840. https://doi.org/10.1021/ac010656q
- H. Parastar, J.R. Radovi´c, M. Jalali-Heravi, S. Diez, J.M. Bayona, R. Tauler, Resolution and quantification of complex mixtures of polycyclic aromatic hydrocarbons in heavy fuel oil sample by means of GC× GC-TOFMS combined to multivariate curve resolution. Analytical Chemistry, 83(24), (2011) 9289–9297. https://doi.org/10.1021/ac201799r
- M. He, Z.Y. Yang, T.B. Yang, Y. Ye, J. Nie, Y. Hu, P. Yan, Chemometrics-enhanced one-dimensional/comprehensive two-dimensional gas chromatographic analysis for bioactive terpenoids and phthalides in ChaihuShugan San essential oils. Journal of Chromatography B, 1052, (2017) 158–168. https://doi.org/10.1016/j.jchromb.2017.03.029
- H.C. Goicoechea, M.J. Culzoni, M.D.G. García, M.M. Galera, Chemometric strategies for enhancing the chromatographic methodologies with second-order data analysis of compounds when peaks are overlapped. Talanta, 83(4), (2011) 1098–1107. https://doi.org/10.1016/j.talanta.2010.07.057
- K.M. Pierce, J.C. Hoggard, R.E. Mohler, R.E. Synovec, Recent advancements in comprehensive two-dimensional separations with chemometrics. Journal of Chromatography A, 1184(1-2), (2008) 341–352. https://doi.org/10.1016/j.chroma.2007.07.059
- C. Zhang, X. Zheng, H. Ni, P. Li, H.J. Li, Discovery of quality control markers from traditional Chinese medicines by fingerprint-efficacy modeling: current status and future perspectives. Journal of Pharmaceutical and Biomedical Analysis, 159, (2018) 296–304. https://doi.org/10.1016/j.jpba.2018.07.006
- Y. Li, Y. Shen, C.L. Yao, D.A. Guo, Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. Journal of Pharmaceutical and Biomedical Analysis, 185, (2020) 113215. https://doi.org/10.1016/j.jpba.2020.113215
- C Jackulin, S. Murugavalli, A comprehensive review on detection of plant disease using machine learning and deep learning approaches. Measurement: Sensors, 24, (2022) 100441. https://doi.org/10.1016/j.measen.2022.100441
- S. Anubha Pearline, V. Sathiesh Kumar, S. Harini, A study on plant recognition using conventional image processing and deep learning approaches. Journal of Intelligent & Fuzzy Systems, 36(3), (2019) 1997-2004. https://doi.org/10.3233/JIFS-169911
- S.S. Harakannanavar, J.M. Rudagi, V.I. Puranikmath, A. Siddiqua, R. Pramodhini, Plant leaf disease detection using computer vision and machine learning algorithms. Global Transitions Proceedings, 3(1), (2022) 305-310. https://doi.org/10.1016/j.gltp.2022.03.016
- K.P. Panigrahi, H. Das, A.K. Sahoo, S.C. Moharana, (2020) Maize leaf disease detection and classification using machine learning algorithms. Progress in Computing, Analytics and Networking, Advances in Intelligent Systems and Computing, Springer, Singapore. https://doi.org/10.1007/978-981-15-2414-1_66
- M.D. Zeiler, R. Fergus, (2014) Visualizing and understanding convolutional networks. Computer Vision–ECCV, Springer. https://doi.org/10.1007/978-3-319-10590-1_53
- Y. Zhu, W. Sun, X. Cao, C. Wang, D. Wu, Y. Yang, N. Ye, TA-CNN: Two-way attention models in deep convolutional neural network for plant recognition. Neurocomputing, 365, (2019) 191-200. https://doi.org/10.1016/j.neucom.2019.07.016
- M.L. Huang, Y.X. Xu, Y.C. Liao, Image dataset on the Chinese medicinal blossoms for classification through convolutional neural network. Data in Brief, 39, (2021) 107655. https://doi.org/10.1016/j.dib.2021.107655
- A. Muneer, S.M. Fati, Efficient and automated herbs classification approach based on shape and texture features using deep learning. IEEE Access, 8, (2020) 196747-196764. https://doi.org/10.1109/ACCESS.2020.3034033
- S. Sachar, A. Kumar, Deep ensemble learning for automatic medicinal leaf identification. International Journal of Information Technology, 14(6), (2022) 3089-3097. https://doi.org/10.1007/s41870-022-01055-z
- C. Sivaranjani, L. Kalinathan, R. Amutha, R.S. Kathavarayan, K.J. Kumar, (2019) Real-time identification of medicinal plants using machine learning techniques. In 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), IEEE, India. https://doi.org/10.1109/ICCIDS.2019.8862126
- M. Brahimi, K. Boukhalfa, A. Moussaoui, Deep learning for tomato diseases: classification and symptoms visualization. Applied Artificial Intelligence, 31(4), (2017) 299-315. https://doi.org/10.1080/08839514.2017.1315516
- A.M. Bammannavar, Y. Meenakshi, M. Rashid, (2024) Medicinal Herbs Identification Using Deep Learning. Convergence of Machine Learning and IoT for Enabling the Future of Intelligent Systems, 24–35. https://doi.org/10.48001/978-81-966500-7-0-3
- M. Lin, Q. Chen, S. Yan, (2018) Network in network. arXiv.
- N.G. Gavhale, A.P. Thakare, Identification of medicinal plant using Machine learning approach. International Research Journal of Engineering and Technology (IRJET), 7(07), (2020), 1116-1119.
- I. Gogul, V.S. Kumar, Flower species recognition system using convolution neural networks and transfer learning. Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), IEEE, India. https://doi.org/10.1109/ICSCN.2017.8085675
- A. Begue, V. Kowlessur, U. Singh, F. Mahomoodally, S. Pudaruth, Automatic recognition of medicinal plants using machine learning techniques. International Journal of Advanced Computer Science and Applications, 8(4), (2017) 166-175. https://doi.org/10.14569/IJACSA.2017.080424
- J. Wei Tan, S.W. Chang, S. Abdul-Kareem, H.J. Yap, K.T. Yong, Deep learning for plant species classification using leaf vein morphometric. IEEE/ACM transactions on computational biology and bioinformatics, 17(1), (2018) 82-90. https://doi.org/10.1109/TCBB.2018.2848653
- A. Liu, Y. Huang, (2016) Plant leaf recognition. In conference proceedings.
- H.J. Aerts, E.R. Velazquez, R.T. Leijenaar, C. Parmar, P. Grossmann, S. Carvalho, J. Bussink, R. Monshouwer, B. Haibe-Kains, D. Rietveld, F. Hoebers, M.M. Rietbergen, C.R. Leemans, A. Dekker, J. Quackenbush, R.J. Gillies, P. Lambin, Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications, 5(1), (2014) 4006. https://doi.org/10.1038/ncomms5644
- P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R.G. Van Stiphout, P. Granton, C.M.L. Zegersa,∙ R. Gilliesb, R. Boellard, A. Dekker, H.J. Aerts, Radiomics: extracting more information from medical images using advanced feature analysis. European journal of cancer, 48(4), (2012) 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
- H. Cartwright, (2015) Artificial Neural Networks, Humana Press. https://doi.org/10.1007/978-1-4939-2239-0
- I. Steinwart, A. Christmann, (2008) Support Vector Machines, Springer Science & Business Media, New York, USA.
- U. Mokhtar, M. A.Ali, A.E. Hassenian, H. Hefny, (2015) Tomato leaves diseases detection approach based on support vector machines. In 2015 11th International computer engineering conference (ICENCO), IEEE, Egypt. https://doi.org/10.1109/ICENCO.2015.7416356
- K. Asefpour Vakilian, J. Massah, An artificial neural network approach to identify fungal diseases of cucumber (Cucumis sativus L.) plants using digital image processing. Archives of Phytopathology and Plant Protection, 46(13), (2013) 1580-1588. https://doi.org/10.1080/03235408.2013.772321
- H. Al-Hiary, S. Bani-Ahmad, M. Reyalat, M.Braik, Z.AlRahamneh, Fast and Accurate Detection and Classification of Plant Diseases. International Journal of Computer Applications, 17(1), (2011) 31-38. https://doi.org/10.5120/2183-2754
- C. Amuthalingeswaran, M. Sivakumar, P. Renuga, S. Alexpandi, J. Elamathi, S.S. Hari, (2019) Identification of Medicinal Plant’s and Their Usage by Using Deep Learning. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), IEEE, India.
- B. Dey, J. Ferdous, R. Ahmed, J. Hossain, Assessing deep convolutional neural network models and their comparative performance for automated medicinal plant identification from leaf images. Helion 10 (2024) 1, e23655, https://doi.org/10.1016/j.heliyon.2023.e23655
- M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and transferring mid-level image representations using convolutional neural networks. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’14), IEEE, USA. https://doi.org/10.1109/CVPR.2014.222
- A.D.A.D.S. Jayalath, T.G.A.G.D. Amarawanshaline, D.P. Nawinna, P.V.D. Nadeeshan, H.P Jayasuriya, (2019) Identification of Medicinal Plants by Visual Characteristics of Leaves and Flowers. 14th Conference on Industrial and Information Systems (ICIIS), IEEE, Sri Lanka. https://doi.org/10.1109/ICIIS47346.2019.9063275
- J. Schmidhuber, Deep Learning in neural networks: an overview. Neural Networks, 61, (2015) 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
- S.O. Oppong, F. Twum, J.B. Hayfron-Acquah, Y.M. Missah, A Novel Computer Vision Model for Medicinal Plant Identification Using Log‐Gabor Filters and Deep Learning Algorithms. Computational Intelligence and Neuroscience, 2022(1), (2022) 1189509. https://doi.org/10.1155/2022/1189509
- F. Siraj, H.M. Ekhsan, A.N. Zulkifli, (2014) Flower image classification modeling using neural network. In 2014 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), IEEE, Indonesia. https://doi.org/10.1109/IC3INA.2014.7042605
- T.T.N. Nguyen, V.T. Le, T.L. Le, V. Hai, N. Pantuwong, Y. Yagi, (2016) Flower species identification using deep convolutional neural networks. In AUN/SEED-Net Regional Conference for Computer and Information Engineering.
- Y.A. Putri, E.C. Djamal, R. Ilyas, Identification of medicinal plant leaves using convolutional neural network. In Journal of Physics: Conference Series, IOP Publishing, 1845(1), (2021) 012026). https://doi.org/10.1088/1742-6596/1845/1/012026
- S.R. Reddy, G.S. Varma, R.L. Davuluri, Optimized convolutional neural network model for plant species identification from leaf images using computer vision. International Journal of Speech Technology, 26(1), (2023) 23-50. https://doi.org/10.1007/s10772-021-09843-x
- C. Zhang, P. Zhou, C. Li, L. Liu, (2015) A convolutional neural network for leaves recognition using data augmentation. In 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, IEEE, UK. https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.318
- G. Dhingra, V. Kumar, H.D. Joshi, Study of digital image processing techniques for leaf disease detection and classification. Multimedia Tools and Applications, 77, (2018) 19951-20000.
- T.P. Pradhan, S. Meher, T. Pradhan, N. Pandey, A. Panda, Image Derivative and K-means Clustering based Dead Zone Identification from Flower Image. Image, 10(05), (2021) 1122-1135.
- I.A. Anjani, Y.R. Pratiwi, S.N.B. Nurhuda, Implementation of deep learning using convolutional neural network algorithm for classification rose flower. In Journal of Physics: Conference Series IOP Publishing, 1842(1), (2021) 012002. https://doi.org/10.1088/1742-6596/1842/1/012002
- M. Tian, Z. Liao, (2021) Research on flower image classification method based on YOLOv5. In Journal of Physics: Conference Series, IOP Publishing, (2024) 012022. https://doi.org/10.1088/1742-6596/2024/1/012022
- M. Hanafiah, M.A. Adnan, S. Abdul-Rahman, S. Mutalib, A. M. Ab Malik, M.R. Shamsuddin, Flower recognition using deep convolutional neural networks. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 1019(1), (2022) 012021. https://doi.org/10.1088/1755-1315/1019/1/012021
- A. Shukla, A. Agarwal, H. Pant, P. Mishra, Flower classification using supervised learning. International Journal of Engineering Research & Technology (IJERT), 9(05), (2020) 757-762. https://doi.org/10.17577/IJERTV9IS050582
- J.Y. Lim, H.S. Ahn, M. Nejati, J. Bell, H. Williams, B.A. MacDonald, (2020) Deep neural network based real-time kiwi fruit flower detection in an orchard environment. arXiv.
- I. Patel, S. Patel, An optimized deep learning model for flower classification using NAS-FPN and faster R-CNN. International Journal of Scientific & Technology Research, 9(03), (2020) 5308-5318.
- T. Ensari, B.R. METE, (2019) Flower Classification with Deep CNN and Machine Learning Algorithms. 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), IEEE, Turkey. https://doi.org/10.1109/ISMSIT.2019.8932908
- I. Patel, S. Patel, Flower identification and classification using computer vision and machine learning techniques. International Journal of Engineering and Advanced Technology (IJEAT), 8(6), (2019) 277-285. https://doi.org/10.35940/ijeat.E7555.088619
- H. Hiary, H. Saadeh, M. Saadeh, M. Yaqub, Flower classification using deep convolutional neural networks. IET computer vision, 12(6), (2018) 855-862. https://doi.org/10.1049/iet-cvi.2017.0155
- M.R. Banwaskar, A.M. Rajurkar, An Efficient Flower Classification System using Feature Fusion. International Journal of Engineering Trends and Technology, 70(11), (2022) 70-80. https://doi.org/10.14445/22315381/IJETT-V70I11P207