Abstract

Existing crop recommender related to either binary classification or multiclass classification. This paper presents conglomerate crop recommendations which consist of a number of different and distinct crops that are grouped together. In this work we focus on transferring knowledge from single label output prediction to multiple label predicted output for a given input data instances. We proposed ESCT algorithm i.e. Ensemble Supervised Clustering Techniques in our research work. ESCT provides a combined approach of conventional clustering and enhanced supervised clustering methodology to optimize the conglomerate recommendation. We are focusing on K-mean clustering for conventional approach and ICCC i.e. Inter cluster correlation coefficient to achieve enhancement in supervised clustering. In conventional K-mean clustering there is a big challenge on how to optimize the k-value of clustering which directly affects the convergence of the clusters. To resolve this problem, we mainly apply function approximation on K-Value which provides us with better clustering and fast convergence. Existing methods for inter-clustering do not adequately address one of the key challenges i.e. exploiting correlations between labels and that is achieved by ICCC algorithm. This model provides learning and prediction of unknown observation by using Back propagation MLL algorithm which provides improved performance.

Keywords

Recommender, Supervised Clustering, ESCT, BP-MLL, ICCC, K-Mean Clustering,

Downloads

Download data is not yet available.

References

  1. K.K. Jha, A. Doshi, A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, (2019) 1-12. https://doi.org/10.1016/j.aiia.2019.05.004
  2. S.K. Prasad, B.S. Sreedharan, S. Jaishanth, (2017) Crop monitoring and recommendation system using machine learning techniques. Madras Institute of Technology, Chennai.
  3. N. Hegde, S. Sannidhi, R. Navada, S. Jambarmath, R. Madhavi, Survey paper on Agriculture Yield Prediction Tool using Machine Learning. International Journal of Advance Research in Computer Science and Management Studies, 5(11), (2017) 36-39.
  4. G. Tsoumakas, I. Katakis, I. Vlahavas, Effective and Efficient Multi-label Classification in Domains with Large Number of Labels. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD '08), 21, (2008) 53-59.
  5. E. Gibaja, S. Ventura. A tutorial on multi-label learning. ACM Computing Surveys, 47(3), (2015) 1–38. https://doi.org/10.1145/2716262
  6. T. Kanungo, D.M. Mount, N. Netanyahu, An efficient k-means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), (2002), 881-892. https://doi.org/10.1109/TPAMI.2002.1017616
  7. M.H. Almannaa, M. Elhenawy, H.A. Rakha, A novel supervised clustering algorithm for transportation system applications. IEEE transactions on intelligent transportation systems, 21(1), (2020) 222-232. https://doi.org/10.1109/TITS.2018.2890588
  8. Z. H. A. I. Dong-hai, Y. Jiang, G. Fei, Y.U. Lei, D.I.N.G. Feng, K-means text clustering algorithm based on initial cluster centers selection according to maximum distance. Application Research of Computers/Jisuanji Yingyong Yanjiu, 31(3), (2014) 713–719.
  9. H. Pomares, I. Rojas, M. Awada, O. Valenzuela, An enhanced clustering function approximation technique for a radial basis function neural network. Journal of Science Direct on Mathematical and Computer Modelling, 55(3-4), (2012) 286-302. https://doi.org/10.1016/j.mcm.2011.07.010
  10. K.O. McGraw, S.P. Wong, Forming inferences about some intraclass correlation coefficients. Psychological methods, 1(1), (1996) 30-46. https://psycnet.apa.org/doi/10.1037/1082-989X.1.1.30
  11. X. Li, N. Ye, Grid- and dummy-cluster-based learning of normal and intrusive clusters for computer intrusion detection. Quality and Reliability Engineering International,18(3), (2002) 231–242. https://doi.org/10.1002/qre.477
  12. M.L. Zhang, Z.H. Zhou, Multilabel neural networks with applications to functional genomics and text categorization. IEEE transactions on Knowledge and Data Engineering, 18(10), (2006) 1338-1351. https://doi.org/10.1109/TKDE.2006.162
  13. A. Manjula, G.Narsimha, (2015) XCYPF: A Flexible and Extensible Framework for Agricultural Crop Yield Prediction. 9th International Conference on Intelligent Systems and Control (ISCO), IEEE, India. https://doi.org/10.1109/ISCO.2015.7282311
  14. G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Transactions on Knowledge & Data Engineering, 17(6), (2005) 734-749. https://doi.org/10.1109/TKDE.2005.99
  15. N. Dumbre, O. Chikane, G. More, System for Agriculture Recommendation Using Data Mining. International Education & Research Journal (IERJ), 1(5), (2015) 2454-9916.
  16. K.A. Reddy, R.K. Kumar, Recommendation System: A Collaborative Model for Agriculture. International Journal of Computer Sciences and Engineering, 6(1), (2018) 120-123. https://doi.org/10.26438/ijcse/v6i1.120123
  17. R. Rajak, A. Pawar, M. Pendke, P. Shinde, S. Rathod, A. Devre, Crop recommendation system to maximize crop yield using machine learning technique. International Research Journal of Engineering and Technology (IRJET), 4(12), (2017) 950-953.
  18. S. Raja, K.S. Rishi, R. Sundaresan, E. Srijit, (2017) Demand based crop recommender system for farmers. IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), IEEE, India. https://doi.org/10.1109/TIAR.2017.8273714
  19. S. Pudumalar, E. Ramanujam, R. Rajashree, H. Kavya, C. Kiruthika, J. Nisha, (2017) Crop recommendation system for precision agriculture. 2016 Eighth International Conference on Advanced Computing (ICoAC), IEEE, India. https://doi.org/10.1109/ICoAC.2017.7951740
  20. M.J. Mokarama, M.S. Arefin, (2017) RSF: A recommendation system for farmers. IEEE Region 10 Humanitarian Technology Conference (R10-HTC), IEEE, Bangladesh. https://doi.org/10.1109/R10-HTC.2017.8289086
  21. S. Mao, W. Lin, L. Jiao, S. Gou, J. Chen, End-to-End Ensemble Learning by Exploiting the Correlation Between Individuals and Weights. IEEE Transactions on Cybernetics, 51(5), (2021) 2835-2846. https://doi.org/10.1109/TCYB.2019.2931071
  22. Z.H. Zhou, (2015) Ensemble learning. Encyclopedia of Biometrics. Boston, Springer, USA. https://doi.org/10.1007/978-1-4899-7488-4_293
  23. L.K. Hansen, P. Salamon, Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), (1990) 993–1001. https://doi.org/10.1109/34.58871
  24. J. Kittler, M. Hatef, R.P. W. Duin, J. Matas, On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), (1998) 226–239. https://doi.org/10.1109/34.667881
  25. S. Vega-Pons, J. Ruiz-Shulcloper, A survey of clustering ensemble algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 25(3), (2011) 337–372. https://doi.org/10.1142/S0218001411008683
  26. A.K. Jain, Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), (2010) 651–666. https://doi.org/10.1016/j.patrec.2009.09.011
  27. L.B. Han, Q. Wang, Z.F. Jiang, Z.Q. Hao, Improved k-means initial clustering center selection algorithm. Jisuanji Gongcheng yu Yingyong (Computer Engineering and Applications), 46(17), (2010)150–152.
  28. UCI Machine learning repository. Available, http://archive.ics.uci.edu/ml
  29. M. Ali, X. Li, Z. Yang Dong, (2005) Efficient Spatial Clustering Algorithm Using Binary Tree. Intelligent Data Engineering and Automated Learning - IDEAL 2005. Lecture Notes in Computer Science, Springer, Berlin. https://doi.org/10.1007/11508069_39
  30. J. Gonzalez, I. Rojas, H. Pomares, J. Ortega, A. Prieto, A new clustering technique for function approximation. IEEE Transactions on Neural Networks, 13(1), (2002) 132–142.
  31. Zhang, M. L., & Zhou, Z. H. (2013). A review on multi-label learning algorithms. IEEE transactions on knowledge and data engineering, 26(8), 1819-1837. https://doi.org/10.1109/TKDE.2013.39
  32. S. Ji, L. Sun, R. Jin, J. Ye, Multi-label multiple kernel learning. Advances in Neural Information Processing Systems, 21 (2008).