Abstract

To segregate the Titanium (Ti) from the reinforcements of the molten scrap of Titanium/Aluminum (Ti/Al) composite, application of ultrasonic vibration is known to be one of the sound techniques. Various studies have been looked at the effect of ultrasonic vibration on the melting process, however not much have been investigated with respect to the solidification process. To fabricate Ti/Al composites in situ, ultrasonic vibration can be effectively used to compress the solidifying melt during the casting process. In this line, the present study focused to investigate the influence of ultrasonic vibration and squeeze pressure on solidification behavior of the α-Al matrix, characteristics of the matrix-reinforcements interface, and distribution of reinforcements. The experimental data indicated that when the amplitude was 60 μm, the Vickers hardness, yield strength, and tensile strength of composites increased by 8.6, 3.9, and 3.1 %, respectively, due to gravity casting. While the squeeze pressure was increased from 50 to 100 MPa, the mean grain size decreased from 90 to 60 μm during the ultrasonic aided squeeze casting (SC) process. However, as the squeeze pressure was raised, the microstructures became coarser and the mechanical characteristics weakened. Yield strength, and tensile strength were increased by 18.7% and 3.2%, respectively, when the squeeze pressure was 100 MPa.

Keywords

Ultrasonic Treatment, Squeeze Casting, Gravity Casting, Solidification, Mechanical Characteristics,

Downloads

Download data is not yet available.

References

  1. D.F.L. Borges, D.C.R. Espinosa, C.G. Schön, Making iron aluminides out of scrap. Journal of Materials Research and Technology, 3(2), (2014), 101–106. https://doi.org/10.1016/j.jmrt.2013.12.002
  2. G. Zambelis, E. Bayraktar, D. Katundi, I. Miskioglu, Manufacturing of copper-based composites reinforced with ceramics and hard intermetallics for applications of electric motor repair parts. Conference Proceedings of the Society for Experimental Mechanics Series, 5, (2019) 137–145. https://doi.org/10.1007/978-3-319-95510-0_16
  3. L.F.P. Ferreira, I. Miskioglu, E. Bayraktar, M.H. Robert, Aluminium matrix composites reinforced by nano Fe3O4 doped with TiO2 by thermomechanical process. Mechanics of Composite and Multi-functional Materials, 7, (2017) 251–259. https://doi.org/10.1007/978-3-319-41766-0_30
  4. V.E. Bazhenov, I.I. Baranov, A.Y. Titov, A.V. Sannikov, D.Y. Ozherelkov, A.A. Lyskovich, A.V. Koltygin, V.D. Belov, Effect of Ti, Sr, and B Addition on the Fluidity of A356.2 Grade Aluminum Alloy. Russian Journal of Non-Ferrous Metals, 63(5), (2022) 526–536. https://doi.org/10.3103/S1067821222050029
  5. S. Kelly, D. Apelian, (2016) Scrap characterization to optimize the recycling process. REWAS 2016: Towards Materials Resource Sustainability, Springer, Cham. https://doi.org/10.1007/978-3-319-48768-7_33
  6. S. Ezeddini, D. Katundi, E. Bayraktar, I. Miskioglu, Laser Cutting of the TiN +Al2O3 Reinforced Aluminium Matrix Composites Through Semisolid Sintering. Mechanics of Composite and Multi-functional Materials, Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics, Springer International Publishing, 6, (2018) 115–129. https://doi.org/10.1007/978-3-319-63408-1_12
  7. A. Kursun, L.F.P. Ferreira, E. Bayraktar, I. Miskioglu, Design of hybrid composites from scrap aluminum reinforced with (SiC+TiO2+Gr+Ti+B). 7, (2017) 225–231. https://doi.org/10.1007/978-3-319-41766-0_27
  8. J. Datta, P. Kosiorek, M, Włoch, Effect of high loading of titanium dioxide particles on the morphology, mechanical and thermo-mechanical properties of the natural rubber-based composites. Iranian Polymer Journal, 25, (2016) 1021–1035. https://doi.org/10.1007/s13726-016-0488-7
  9. J. Li, Y. Pan, D. Zhao, S. Lü, S. Wu, W. Guo, Development of a novel high strength and toughness Al–Cu–Li alloy casting billet with a new process. Materials Science and Engineering A, 854, (2022) 143827. https://doi.org/10.1016/j.msea.2022.143827
  10. S. Wang, H. Fang, R. Chen, X. Yang, Y. Jin, Y. Su, J. Guo, Research of different mechanisms in the weak/strong acoustic active zones on microstructure evolution and mechanical property of Ti48Al2Cr2Nb2.5C composites. Journal of Alloys and Compounds, 895, (2022). https://doi.org/10.1016/j.jallcom.2021.162678
  11. S. Kandemir, H.V Atkinson, D.P. Weston, S.V Hainsworth, Thixoforming of A356/SiC and A356/TiB2 Nanocomposites Fabricated by a Combination of Green Compact Nanoparticle Incorporation and Ultrasonic Treatment of the Melted Compact. Metallurgical and Materials Transactions A, 45(12), (2014) 5782–5798. https://doi.org/10.1007/s11661-014-2501-0
  12. J. Nampoothiri, B. Raj, K.R. Ravi, Effect of ultrasonic treatment on microstructure and mechanical property of in-situ Al/2TiB2 particulate composites. Materials Science Forum, 830–831, (2015) 463-466. https://doi.org/10.4028/www.scientific.net/MSF.830-831.463
  13. Z. Xie, R. Jiang, X. Li, L. Zhang, A. Li, Z. He, Microstructural evolution and mechanical properties of TiB2/2195 composites fabricated by ultrasonic-assisted in-situ casting. Ultrasonics Sonochemistry, 90, (2022) 106203. https://doi.org/10.1016/j.ultsonch.2022.106203
  14. S. Ramani, K.L.D. Wins, J. Nampoothiri, K.R. Ravi, D.S.E.J. Dhas, Effect of post-reaction ultrasonic treatment on synthesis, microstructural evolution and mechanical behaviour of Al 4043/TiB2 in situ nanocomposites. Arabian Journal for Science and Engineering, 46(8), (2021) 7521–7531. https://doi.org/10.1007/s13369-021-05468-z
  15. A. A. Mukhametgalina, M.A. Murzinova, A.A. Nazarov, The microstructure and properties of the alloy Ti-5Al-0.5V subjected to ECAP and ultrasonic treatment. IOP Conference Series: Materials Science and Engineering, 672(1), (2019) 012047. https://doi.org/10.1088/1757-899X/672/1/012047
  16. Y. Tan, H. Fang, Y. Liu, X. Wang, R. Chen, F. Cao, Y. Su, J. Guo, H. Fu, Regulating the macro/microstructure and mechanical properties of Ti2AlN/Ti46Al4Nb1Mo composites via ultrasonic treatment. Materials Science and Engineering: A, 841, (2022) 143013. https://doi.org/10.1016/j.msea.2022.143013
  17. M.A. Easton, M. Qian, A. Prasad, D.H. StJohn, Recent advances in grain refinement of light metals and alloys. Current Opinion in Solid State and Materials Science, 20(1), (2016) 13–24. https://doi.org/10.1016/j.cossms.2015.10.001
  18. J. Wang, G. Chen, J. Zhang, X. Chang, Q. Chen, H. Zhan, J. Wan, F. Han, Microstructures and mechanical properties of squeeze cast in-situ TiB2/2024Al composite fabricated by applying ultrasonic vibration during solidification. Materials Research Express, 6(10), (2019) 106599. https://doi.org/10.1088/2053-1591/ab3c19
  19. J. Liu, X. Chen, W. Wang, Y. Zhao, N. He, Effect of TiB2 Nanoparticle Content on the Microstructure and Mechanical Properties of TiB2/Mg-4Al-1.5Si Composites. Materials, 16(7), (2023) 2852. https://doi.org/10.3390/ma16072852
  20. Q. Liao, J. Li, J. Liu, S. Lu, L. Chen, W. Guo, S. Wu, Effects of Al-Ti-C Refiner and Forming Processes on the Microstructure and Properties of Al-Zn-Mg-Cu Alloys. Materials, 15(19), (2022) 6960. https://doi.org/10.3390/ma15196960
  21. G. Chen, X. Chang, J. Zhang, Y. Jin, C. Sun, Q. Chen, Z. Zhao, Microstructures and Mechanical Properties of In-Situ Al3Ti/2024 Aluminum Matrix Composites Fabricated by Ultrasonic Treatment and Subsequent Squeeze Casting. Metals and Materials International, 26(10), (2020) 1574–1584.https://doi.org/10.1007/s12540-019-00396-y
  22. S. Kim, J. Shin, H. Cho, Y. Kim, S. Yi, Microstructural Refinement of As-Cast Al-Mg Alloy by Ultrasonic Melt Treatment Using a Titanium Sonotrode under Fully Liquid Condition. Materials Transactions, 63(10), (2022) 1469–1476. https://doi.org/10.2320/matertrans.MT-M2022078
  23. J. Li, S. Lu, S. Wu, W. Guo, F. Li, Variation of microstructure and mechanical properties with nano-SiCp levels in the nano-SiCp/AlCuMnTi composites. Journal of Alloys and Compounds, 769, (2018) 848–857. https://doi.org/10.1016/j.jallcom.2018.08.066
  24. J. Li, S. Lu, S. Wu, D. Zhao, W. Guo, Micro-mechanism of simultaneous improvement of strength and ductility of squeeze-cast Al–Cu alloy. Materials Science and Engineering: A, 833, (2022) 142538. https://doi.org/10.1016/j.msea.2021.142538
  25. T. Lu, T. He, W. Chen, H. Chen, Y. Liu, B. Wan, Z. Fu, S. Scudino, Effect of solution time on the microstructure, precipitation behavior and mechanical properties of (Co0.5NiFeCrTi0.5 + SiC)p/7075Al hybrid composite. Materials Characterization, 170, (2020) 110702. https://doi.org/10.1016/j.matchar.2020.110702
  26. C. Kumar, S. Sarkar, G. Mukhopadhyay, P.C. Chakraborti, I. Sen, S. Roy, Systematic study of the effect of K2TiF6 flux content on the microstructure and mechanical properties of Al–B4C composites. Materials Science and Engineering A, 871, (2023) 144913. https://doi.org/10.1016/j.msea.2023.144913
  27. Y. Lu, C. Wu, H. Wu, J. Wang, Y.Y. Su, Z. Gan, J. Liu, Growth Mechanism of Eutectic Si in Super-Gravity Solidified Al-Si Alloy during Annealing. Crystals, 13(4), (2023) 684. https://doi.org/10.3390/cryst13040684
  28. M. Cabibbo, F. Prusa, Microstructure based strengthening model of a biocompatible WE54 alloy reinforced by SiC. La Metallurgia Italiana, 8-19.
  29. A. Mishra, D. Dixit, R. Al-Sabur, Development of specially reinforced magnesium composites prepared by squeeze casting process. Research on Engineering Structures and Materials, 7(4), (2021) 635–646. https://doi.org/10.33774/chemrxiv-2021-773t6-v2
  30. Y. Liu, Z. Zheng, M. Mao, T. Lu, G. Cao, D. Zhu, W. Chen, Effects of micron heterogeneous metal particles on the microstructure and mechanical properties of 7075Al hybrid composites. Journal of Alloys and Compounds, 808, (2019) 151727. https://doi.org/10.1016/j.jallcom.2019.151727
  31. D. Lu, J. Wang, J. Yu, Y. Jiang, Influence of adding Ti powder in preform on microstructure and mechanical properties of Al2O3p/steel composites by squeeze casting. Journal of Wuhan University of Technology- Materials Science Edition, 33(1), (2018) 164–170. https://doi.org/10.1007/s11595-018-1801-4
  32. K. Asano, H. Yoneda, Y. Agari, M. Matsumuro, K. Higashi, Thermal and mechanical properties of aluminum alloy composite reinforced with potassium hexatitanate short fiber. Materials Transactions, 56(1), (2014) 160–166. https://doi.org/10.2320/matertrans.M2014284
  33. A. Dmitruk, A. Zak, K. Naplocha, W. Dudziński, J. Morgiel, Development of pore-free Ti-Al-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration. Materials Characterization, 146, (2018) 182-188. https://doi.org/10.1016/j.matchar.2018.10.005
  34. S. C. Kurnaz, H. Sevik, S. Aikgoz, A. Ozel, Influence of titanium and chromium addition on the microstructure and mechanical properties of squeeze cast Mg-6Al alloy. Journal of Alloys and Compounds, 509(6), (2011) 3190–3196. https://doi.org/10.1016/j.jallcom.2010.12.055
  35. D. Nursyifaulkhair, R. Wijanarko, I. Angela, B.T. Sofyan, Effects of the aging temperature on the mechanical properties and microstructures of Al-5.1Zn-1.8Mg-0.4Ti wt.% alloy produced by squeeze casting. International Journal of Mechanical Engineering and Robotics Research, 8(1), (2019) 92–98. https://doi.org/10.18178/ijmerr.8.1.92-98
  36. T. Lu, S. Scudino, W. Chen, P. Wang, D. Li, M. Mao, Y. Liu, Z. Fu, The influence of nanocrystalline CoNiFeAl0.4Ti0.6Cr0.5 high-entropy alloy particles addition on microstructure and mechanical properties of SiCp/7075Al composites. Materials Science and Engineering: A, 726, (2018) 126–136. https://doi.org/10.1016/j.msea.2018.04.080
  37. S.K. Soni, B. Thomas, Influence of TiO2 and MWCNT nanoparticles dispersion on microstructure and mechanical properties of Al6061 matrix hybrid nanocomposites. Materials Research Express, 6(12), (2019) 1265f3. https://doi.org/10.1088/2053-1591/ab5dfe
  38. J. Yu, D.H. Lu, J. Wang, Y.H. Jiang, Influence of TiO2 on microstructure and mechanical properties of Al2O3p/steel matrix composites prepared by squeeze casting. Materials Engineeringm, 44(12), (2016) 84–91.
  39. Y. Lu, J. Yang, J. Li, P. Li, Squeeze cast co-continuous TiN reinforced Al matrix composites. Kuei Suan Jen Hsueh Pao/Journal Chinese Ceram. Soc., 43(4), (2015) 532–537. https://doi.org/10.14062/j.issn.0454-5648.2015.04.26