Abstract

This study introduces an ensemble classification model designed to categorize Alzheimer’s disease (AD) into four distinct classes—mild dementia, no dementia, moderate dementia, and very mild dementia—using Magnetic Resonance Imaging (MRI). The proposed model entitled the Ensemble Classification Model to Predict Alzheimer's Incidence as Multiple Classes (PAIMC) that integrates a six-dimensional analysis of MR images, encompassing entropies, Fractal Dimensions, Gray Level Run Length Matrix (GLRLM), Gray Level Co-occurrence Matrix (GLCM), morphological features, and Local Binary Patterns. A four-fold multi-label cross-validation approach was employed on a benchmark dataset to evaluate the model's performance. Quantitative analysis reveals that PAIMC consistently achieves superior Decision Accuracy, F-Score, Specificity, Sensitivity Recall, and Precision metrics compared to existing state-of-the-art models. For instance, PAIMC's Decision Accuracy and Precision outperform the second-best model by a notable margin across all folds. The model also demonstrates a significant improvement in Sensitivity Recall and Specificity, reinforcing its efficacy in the multi-class classification of AD stages. A novel data diversity assessment measure was developed and utilized, further confirming the robustness of the PAIMC model. The results underscore the potential of PAIMC as a highly accurate tool for AD classification in clinical settings.

Keywords

Mini Mental State Examination (MMSE), PAIMC, Magnetic Resonance Imaging, Alzheimer’s Disease, Mild Cognitive Impairment, Support-Vector-Machine,

Downloads

Download data is not yet available.

References

  1. R.J. Harvey, M. Skelton-Robinson, M.N. Rossor, The prevalence and causes of dementia in people under the age of 65 years. Journal Neurology, Neurosurgery & Psychiatry, 74(9), (2003) 1206-1209. https://doi.org/10.1136/jnnp.74.9.1206
  2. M. Prince, A. Comas-Herrera, M. Knapp, M. Guerchet, M. Karagiannidou, World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. Alzheimer’s disease International (ADI), London, UK.
  3. A. McMurtray, D.G. Clark, D. Christine, M.F. Mendez, Early-onset dementia: frequency and causes compared to late-onset dementia. Dementia and Geriatric Cognitive Disorders, 21(2), (2006) 59-64. https://doi.org/10.1159/000089546
  4. V. Hosamani, H.S. Vimala, Data Science: Prediction and Analysis of Data using Multiple Classifier System, International Journal of Computer Engineering in Research Trends, 5(12), (2018) 216–222. https://doi.org/10.22362/ijcert/2018/v5/i12/v5i1201
  5. C. Eckerström, E. Olsson, M. Borga, S. Ekholm, S. Ribbelin, S. Rolstad, G. Starck, Å. Edman, A. Wallin, H. Malmgren, Small baseline volume of left hippocampus is associated with subsequent conversion of MCI into dementia: the Göteborg MCI study. Journal Neurological Sciences, 272(1-2), (2008) 48-59. https://doi.org/10.1016/j.jns.2008.04.024
  6. D. Facal, S. Valladares‐Rodriguez, C. Lojo‐Seoane, A.X. Pereiro, L. Anido‐Rifon, O. Juncos‐Rabadán, Machine learning approaches to studying the role of cognitive reserve in conversion from mild cognitive impairment to dementia. International journal of geriatric psychiatry, 34(7), (2019) 941-949. https://doi.org/10.1002/gps.5090
  7. A.M. Darcy, A.K. Louie, L.W. Roberts, Machine learning and the profession of medicine. Jama, Network, 315(6) (2016) 551-552. https://doi.org/10.1001/jama.2015.18421
  8. M. Prince, E. Albanese, M. Guerchet, M. Prina, World Alzheimer Report 2014: Dementia and risk reduction: An analysis of protective and modifiable risk factors. HAL.
  9. A.A. Ibrahim, A. Alhialy, Enhancing Diabetes Risk Assessment in PIMA Indians: A Machine Learning Approach Using AdaBoost. International Journal of Computer Engineering in Research Trends, 10(6), (2023) 15–21. https://doi.org/10.22362/ijcert/2023/v10/i06/v10i0603
  10. Alzheimer's Association, 2014 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 10(2), (2014) e47-e92. https://doi.org/10.1016/j.jalz.2014.02.001
  11. K.G. Yiannopoulou, S.G. Papageorgiou, Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6, (2013) 19-33. https://doi.org/10.1177/1756285612461679
  12. D. Zhang, D. Shen, Alzheimer's Disease Neuroimaging Initiative, Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PloS one. 7(3), (2012) e33182. https://doi.org/10.1371/journal.pone.0033182
  13. A. Nordberg, J.O. Rinne, A. Kadir, B. Langstrom, The use of PET in Alzheimer disease. Nature Reviews Neurology, 6(2), (2010) 78-87. https://doi.org/10.1038/nrneurol.2009.217
  14. H.I. Suk, C.Y. Wee, D. Shen, Discriminative group sparse representation for mild cognitive impairment classification. International Workshop on Machine Learning in Medical Imaging, Springer, Cham, (2013) 131-138. https://doi.org/10.1007/978-3-319-02267-3_17
  15. S. Keihaninejad, H. Zhang, N.S. Ryan, I.B. Malone, M. Modat, M. Jorge Cardoso, D.M. Cash, N.C. Fox, S. Ourselin, An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer's disease. Neuroimage, 72, (2013) 153-163. https://doi.org/10.1016/j.neuroimage.2013.01.044
  16. T. Tong, R. Wolz, Q.Gao, R. Guerrero, J.V. Hajnal, D. Rueckert, the Alzheimer’s Disease Neuroimaging Initiative, Multiple instance learning for classification of dementia in brain MRI. Medical Image Analysis, 18(15), (2014) 808-818. https://doi.org/10.1016/j.media.2014.04.006
  17. M. Goryawala, Q. Zhou, W. Barker, D.A. Loewenstein, R. Duara, M. Adjouadi, Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer’s disease and mild cognitive impairment. Computational intelligence and neuroscience, 2015, (2015). https://doi.org/10.1155/2015/865265
  18. E. Janoušová, M. Vounou, R. Wolz, K.R. Gray, D. Rueckert, G. Montana, (2012) Biomarker discovery for sparse classification of brain images in Alzheimer's disease. Annals of the BMVA, 2.
  19. S.F. Eskildsen, P. Coupe, D. García-Lorenzo, V. Fonov, J.C. Pruessner, D.L. Collins, & Alzheimer's Disease Neuroimaging Initiative, Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning," Neuroimage, 65 (2013) 511-521. https://doi.org/10.1016/j.neuroimage.2012.09.058
  20. N.M. Patil, M.U. Nemade, Music genre classification using MFCC, K-NN and SVM classifier. International Journal of Computer Engineering in Research Trends, 4(2), (2017) 43-47.
  21. J.Y. Tou, Y.H. Tay, P.Y. Lau, (2008) One-dimensional grey-level co-occurrence matrices for texture classification. International Symposium on Information Technology, Malaysia. https://doi.org/10.1109/ITSIM.2008.4631992
  22. G.W. Jiji, G.E. Suji, M. Rangini, An intelligent technique for detecting Alzheimer's disease based on brain structural changes and hippocampal shape. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2(2), (2014) 121-128. https://doi.org/10.1080/21681163.2013.879838
  23. M.S. De Oliveira, M.L.F. Balthazar, A. D'abreu, C.L. Yasuda, B.P. Damasceno, F. Cendes, & G. Castellano, MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease. American Journal of Neuroradiology, 32(1), (2011) 60-66. https://doi.org/10.3174/ajnr.A2232
  24. M. Torabi, R.D. Ardekani, E. Fatemizadeh, (2006) Discrimination between Alzheimer's disease and control group in MR-images based on texture analysis using artificial neural network International Conference on Biomedical and Pharmaceutical Engineering, Singapore.
  25. P. Ghorbanian, D.M. Devilbiss, A. Verma, A. Bernstein, T. Hess, A.J. Simon, H. Ashrafiuon, Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform. Annals of biomedical engineering, 41, (2013) 1243-1257. https://doi.org/10.1007/s10439-013-0795-5
  26. P.B. Abhi, K.A.R. Torres, T. Yusoff, K. Samunnisa, A Novel Lightweight Cryptographic Protocol for Securing IoT Devices. International Journal of Computer Engineering in Research Trends, 10, (2023) 24-30.
  27. Y. Guo, Z. Zhang, B. Zhou, P. Wang, H. Yao, M. Yuan, N. An, H. Dai, L. Wang, X. Zhang & Y. Liu, Grey-matter volume as a potential feature for the classification of Alzheimer’s disease and mild cognitive impairment: an exploratory study. Neuroscience bulletin, 30, (2014) 477-489. https://doi.org/10.1007/s12264-013-1432-x
  28. A. M. Martinez, A.C. Kak, PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), (2001) 228-233. https://doi.org/10.1109/34.908974
  29. D. Salas-Gonzalez, J.M. Górriz, J. Ramírez, M. López, I. Álvarez, F. Segovia, C.G. Puntonet, Computer-aided diagnosis of Alzheimer's disease using support vector machines and classification trees. Physics in Medicine & Biology, 55(10), (2010) 2807. https://doi.org/10.1088/0031-9155/55/10/002
  30. O. Yamashita, Masa-aki Sato, Taku Yoshioka, Frank Tong, Yukiyasu Kamitani, Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. Neuroimage, 42(4), (2008) 1414-1429. https://doi.org/10.1016/j.neuroimage.2008.05.050
  31. P. Pradeep, J. Kamalakannan, Effective Predictor Model for Parkinson’s Disease Using Machine Learning. International Journal of Computer Engineering in Research Trends, 10(4), (2023) 204–209. https://doi.org/10.22362/ijcert/2023/v10/i04/v10i0410
  32. S.J. Hanson, Y.O. Halchenko, and Brain reading using full brain support vector machines for object recognition: there is no 'face' identification area. Neural Computation, 20(2), (2008) 486-503. https://doi.org/10.1162/neco.2007.09-06-340
  33. C. Chu, A.L. Hsu, K.H. Chou, P. Bandettini, C. Lin, Alzheimer's Disease Neuroimaging Initiative, Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage, 60(1), (2012) 59-70. https://doi.org/10.1016/j.neuroimage.2011.11.066
  34. A.R. Hidalgo-Muñoz, M.M. López, I.M. Santos, A.T. Pereira, M. Vázquez-Marrufo, A. Galvao-Carmona, A.M. Tomé,. Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing. Expert systems with Applications, 40(6), (2013) 2102-2108. https://doi.org/10.1016/j.eswa.2012.10.013
  35. A.R. Hidalgo-Muñoz, J. Ramírez, J.M. Górriz, & P. Padilla, Regions of interest computed by SVM wrapped method for Alzheimer’s disease examination from segmented MRI. Frontiers in aging neuroscience, 6, (2014) 20. https://doi.org/10.3389/fnagi.2014.00020
  36. M. Gönen, E. Alpaydın, Multiple kernel learning algorithms. The Journal of Machine Learning Research, 12, (2011) 2211-2268.
  37. O.B. Ahmed, J. Benois-Pineau, M. Allard, G. Catheline, C.B. Amar, & Alzheimer's Disease Neuroimaging Initiative.. Recognition of Alzheimer's disease and Mild Cognitive Impairment with multimodal image-derived biomarkers and Multiple Kernel Learning. Neurocomputing, 220(12), (2017) 98-110. https://doi.org/10.1016/j.neucom.2016.08.041
  38. K.R. Kruthika, H.D. Maheshappa, Alzheimer's Disease Neuroimaging Initiative. Multistage classifier-based approach for Alzheimer's disease prediction and retrieval. Informatics in Medicine Unlocked, 14, (2019) 34-42. https://doi.org/10.1016/j.imu.2018.12.003
  39. R. Ju, C. Hu, Q. Li, Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(1), (2017) 244-257. https://doi.org/10.1109/TCBB.2017.2776910
  40. R. Cui, M. Liu, Alzheimer's Disease Neuroimaging Initiative, RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Computerized Medical Imaging and Graphics, 73, (2019) 1-10. https://doi.org/10.1016/j.compmedimag.2019.01.005
  41. V. Karami, F. Amenta, G. Noce, C. Del Percio, R. Lizio, M.T. Pascarelli, M. Blūma, C. Babiloni, P68-F Abnormalities of cortical neural synchronization mechanisms in patients with Alzheimer’s diseases dementia: An EEG studyClinical Neurophysiology, 130(7), (2019) e86-e87. https://doi.org/10.1016/j.clinph.2019.04.517
  42. F. Er, P. Iscen, S. Sahin, N. Cinar, S. Karsidag, D. Goularas, Distinguishing age-related cognitive decline from dementias: A study based on machine learning algorithms. Journal of Clinical Neuroscience, 42, (2017) 186-192. https://doi.org/10.1016/j.jocn.2017.03.021
  43. C.R. Aditya, M.S. Pande, Devising an interpretable calibrated scale to quantitatively assess the dementia stage of subjects with Alzheimer's disease: A machine learning approach. Informatics in Medicine Unlocked, 6, (2017) 28-35. https://doi.org/10.1016/j.imu.2016.12.004
  44. L. Liu, S. Zhao, H. Chen, A. Wang, A new machine learning method for identifying Alzheimer's disease. Simulation Modelling Practice and Theory, 99, (2020) 102023. https://doi.org/10.1016/j.simpat.2019.102023
  45. G. Battineni, N. Chintalapudi, F. Amenta, Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Informatics in Medicine Unlocked, 16, (2019) 100200. https://doi.org/10.1016/j.imu.2019.100200
  46. C. Jimenez-Mesa, I.A. Illán, A. Martin-Martin, D. Castillo-Barnes, F.J. Martinez-Murcia, J. Ramirez, J.M. Gorriz, Optimized one vs one approach in multiclass classification for early Alzheimer’s disease and mild cognitive impairment diagnosis. IEEE Access, 8, (2020) 96981-96993. https://doi.org/10.1109/ACCESS.2020.2997736
  47. W. Lin, Q. Gao, M. Du, W. Chen, T. Tong, Multiclass diagnosis of stages of Alzheimer's disease using linear discriminant analysis scoring for multimodal data. Computers in Biology and Medicine, 134, (2021) 104478. https://doi.org/10.1016/j.compbiomed.2021.104478
  48. C.H. Lai, S.S. Yu, H.Y. Tseng, & M.H. Tsai, A protozoan parasite extraction scheme for digital microscopic images. Computerized Medical Imaging and Graphics, 34(2), (2010) 122-130. https://doi.org/10.1016/j.compmedimag.2009.07.008
  49. R.C. Gonzalez, R.E. Woods, & S.L. Eddins, (2004) Digital image processing using MATLAB, Pearson Education India.
  50. A.P.S. Pharwaha, B. Singh, Shannon and non-shannon measures of entropy for statistical texture feature extraction in digitized mammograms. In Proceedings of the world congress on engineering and computer science, 2(6), (2009) 20-22.
  51. M. Ghosh, D. Das, & C. Chakraborty, (2010) Entropy based divergence for leukocyte image segmentation. In 2010 International Conference on Systems in Medicine and Biology, IEEE, India. https://doi.org/10.1109/ICSMB.2010.5735414
  52. F.B. Tek, A.G. Dempster, I. Kale, Computer vision for microscopy diagnosis of malaria. Malaria journal, 8, (2009) 1-14. https://doi.org/10.1186/1475-2875-8-153
  53. F.B. Tek, A.G. Dempster, I. Kale, Parasite detection and identification for automated thin blood film malaria diagnosis. Computer vision and image understanding, 114(1), (2010) 21-32. https://doi.org/10.1016/j.cviu.2009.08.003
  54. M.M. Galloway, Texture classification using gray level run length. Computer Graphics and Image Processing. 4(2), (1975) 172-179. https://doi.org/10.1016/S0146-664X(75)80008-6
  55. A. Chu, C.M. Sehgal, J.F. Greenleaf, Use of gray value distribution of run lengths for texture analysis. Pattern recognition letters, 11(6), (1990) 415-419. https://doi.org/10.1016/0167-8655(90)90112-F
  56. B.V. Dasarathy, E.B. Holder, Image characterizations based on joint gray level-run length distributions. Pattern Recognition Letters, 12(8), (1991) 497-502. https://doi.org/10.1016/0167-8655(91)80014-2
  57. M. Muthu Rama Krishnan, P. Shah, C. Chakraborty, & A.K. Ray, Statistical analysis of textural features for improved classification of oral histopathological images. Journal of medical systems, 36, (2012) 865-881. https://doi.org/10.1007/s10916-010-9550-8
  58. B.B. Mandelbrot, (1983) the fractal geometry of nature/Revised and enlarged edition. Freeman and Co, New York.
  59. N. Sarkar, B.B. Chaudhuri, An efficient differential box-counting approach to compute fractal dimension of image. IEEE Transactions on Systems, Man, and Cybernetics, 24(1), (1994) 115-120. https://doi.org/10.1109/21.259692
  60. T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), (2002) 971-987. https://doi.org/10.1109/TPAMI.2002.1017623
  61. M.M. Krishnan, Textural characterization of histopathological images for oral sub-mucous fibrosis detection. Tissue and Cell, 43(5), (2011) 318-330. https://doi.org/10.1016/j.tice.2011.06.005
  62. M.K. Hu, Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2), (1962) 179-187. https://doi.org/10.1109/TIT.1962.1057692
  63. D. Das, M. Ghosh, C. Chakraborty, M. Pal, A.K. Maity, (2010) Invariant moment-based feature analysis for abnormal erythrocyte recognition. In 2010 International conference on systems in medicine and biology, IEEE, India. https://doi.org/10.1109/ICSMB.2010.5735380
  64. I. Guyon, A. Elisseeff, An introduction to variable and feature selection. Journal of machine learning research, 3, (2003) 1157-1182.
  65. H. Budak, S.E. Taşabat, A modified t-score for feature selection. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 17(6), (2016) 845-852. https://doi.org/10.18038/aubtda.279853
  66. T. Naga Lakshmi, S. Jyothi, M. Rudra Kumar, Image Encryption Algorithms Using Machine Learning and Deep Learning Techniques-A Survey. in Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough, Springer, (2021) 507-515. https://doi.org/10.1007/978-3-030-68291-0_40
  67. M. Rudra Kumar, V.K. Gunjan, (2022) Peer Level Credit Rating: An Extended Plugin for Credit Scoring Framework. in ICCCE 2021, Lecture Notes in Electrical Engineering, 828, Springer, Singapore, https://doi.org/10.1007/978-981-16-7985-8_128
  68. O.K.J. Savoy, Feature selection in sentiment analysis. In Proceedings of the 9th French Information Retrieval Conference, (2012) 273-284.
  69. P. Sahoo, T. Riedel, (1998) Mean value theorems and functional equations. World Scientific. https://doi.org/10.1142/3857
  70. J.R. Dwaram, M. Rudra Kumar, Crop yield forecasting by long short-term memory network with Adam optimizer and Huber loss function in Andhra Pradesh, India. Concurrency and Computation Practice Experience, 34(27), (2022) e7310. https://doi.org/10.1002/cpe.7310
  71. M.S. Thulasi, B. Sowjanya, K. Sreenivasulu, M.R. Kumar, Knowledge attitude and practices of dental students and dental practitioners towards artificial intelligence. International Journal of Intelligent Systems and Applications in Engineering, 10(1), (2022) 248-253.
  72. B. Burt Gerstman, "t-Table," San Jose State University, (2017). [Online]. Available at: http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
  73. R. Real, J.M. Vargas, The probabilistic basis of Jaccard's index of similarity, Systematic Biology, 45(3), (1996) 380-385. https://doi.org/10.1093/sysbio/45.3.380
  74. T. Kent, Information gain and a general measure of correlation. Biometrika, 70(1), (1983) 163-173. https://doi.org/10.1093/biomet/70.1.163