Abstract

Hematite (α-Fe2O3) nanoparticles have been prepared by the conventional chemical precipitation synthesis technique. The prepared samples were subjected to structural, morphological, optical, magnetic and antibacterial behaviours. The diffraction analysis implies that the measured crystallite size of α- Fe2O3 nanoparticles is found to be 39 nm. The UV-visible absorption spectroscopy exhibits a strong absorption around 560 nm which is characteristics of Fe2O3 nanoparticles and the calculated bandgap value is found to be 2.07 eV. The presence of iron oxide polymorphs can be demonstrated by displaying phonon modes in Raman spectroscopy. Fourier-transform infrared spectroscopy (FTIR) study is used to identify the existence of functional groups and chemical structure of the synthesised Fe2O3 nanoparticles. Magnetic analysis displays hysteretic behaviour at room temperature with saturation magnetization Ms = 0.0036 emu/gm, the remanent magnetization Mr = 0.000698 emu/gm, and coercivity Hc = –0.27 Oe, respectively. The antibacterial activities of these α-Fe2O3 nanoparticles were investigated on pathogenic bacteria Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, and E. coli by a zone of inhibition method.

Keywords

α Fe2O3 nanoparticles, XRD, SEM, Magnetic properties, Antibacterial activity,

Downloads

Download data is not yet available.

References

  1. K. Lu, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties, Materials Science and Engineering: R: Reports, 16(4), (1996) 161-221. https://doi.org/10.1016/0927-796X(95)00187-5
  2. Z. Wu, S. Yang, W. Wu, Shape control of inorganic nanoparticles from solution, Nanoscale, 8, (2016) 1237-1259. https://doi.org/10.1039/C5NR07681A
  3. D. Cao, P. He, N. Hu, Electrochemical biosensors utilising electron transfer in heme proteins immobilised on Fe3O4 nanoparticles, Analyst, 128(10), (2003) 1268-1274. https://doi.org/10.1039/B308242C
  4. S. Agarwala, Z.L. Lim, E. Nicholson, G.W. Ho, Probing the morphology-device relation of Fe2O3nanostructures towards photovoltaic and sensing applications. Nanoscale, 4 (2012) 194-205. https://doi.org/10.1039/C1NR10856E
  5. W. Wu, R. Hao, F. Liu, X. Su, Y. Hou, Single-crystalline α-Fe 2 O 3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. Journal of Materials Chemistry A, 23 (2013) 6888-6894. https://doi.org/10.1039/C3TA10886D
  6. Yan. Zhao, Y. Liu, H. Liu, H. Kang, K. Cao, Q. Wang, C. Zhang, Y.Wang, H. Yuan, L. Jiao, Improved dehydrogenation performance of LiBH4 by 3D hierarchical flower-like MoS2 spheres additives. Journal of Power Sources, 300 (2015) 358-364. https://doi.org/10.1016/j.jpowsour.2015.09.088
  7. M. Fiore, G. Longoni, S. Santangelo, F. Pantò, S. Stelitano, P. Frontera, P. Antonucci, R. Ruffo, Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries. Electrochimica Acta, 269 (2018) 367-377. https://doi.org/10.1016/j.electacta.2018.02.161
  8. J. Ma, J. Lian, X. Duan, X. Liu, W. Zheng. α-Fe2O3: hydrothermal synthesis, magnetic and electrochemical properties. The Journal of Physical Chemistry C, 114(24), (2010) 10671-10676. https://doi.org/10.1021/jp102243g
  9. V.D. Nithya, N. Sabari Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors. Journal of Power Sources, 327 (2016) 297-318. https://doi.org/10.1016/j.jpowsour.2016.07.033
  10. C.P. Singh, K.S. Bindra, G.M. Bhalerao, S.M. Oak. Investigation of optical limiting in iron oxide nanoparticles. Optics Express, 16(12), (2008) 8440-8450. https://doi.org/10.1364/OE.16.008440
  11. W. Wu, C.Z. Jiang, V.A. Roy, Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 8(47), (2016) 19421-19474. https://doi.org/10.1039/C6NR07542H
  12. J. Chen, L. Xu, W. Li, X. Gou, α‐Fe2O3 nanotubes in gas sensor and lithium‐ion battery applications. Advanced Materials, 17(5), (2005) 582-586. https://doi.org/10.1002/adma.200401101
  13. X. Wen, S. Wang, Y. Ding, Z.L. Wang, S. Yang, Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. The Journal of Physical Chemistry B, 109(1), (2005) 215-220. https://doi.org/10.1021/jp0461448
  14. K. Woo, H.J. Lee, J‐P. Ahn, Yong Sung Park. Sol–gel mediated synthesis of Fe2O3 nanorods. Advanced Materials, 15(20), (2003) 1761-1764. https://doi.org/10.1002/adma.200305561
  15. H. Xu, L. Cui, N. Tong, H. Gu, Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. Journal of the American Chemical Society, 128(49), (2006) 15582-15583. https://doi.org/10.1021/ja066165a
  16. R. Vijayakumar, Y. Koltypin, I. Felner, A. Gedanken, Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Materials Science and Engineering A, 286(1), (2000) 101-105. https://doi.org/10.1016/S0921-5093(00)00647-X
  17. S-Z. Li, Y.C. Hong, Han S. Uhm, Zhe-Kui Li. Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure. Japanese journal of applied physics, 43(11R) (2004) 7714. https://doi.org/10.1143/JJAP.43.7714
  18. R.T. Rasheed, S.D. Al-Algawi, H.H. Kareem, H.S. Mansoor. Preparation and characterization of hematite iron oxide (α-Fe2O3) by sol-gel method, Chemical sciences journal, 9(4), (2018) 1000197. https://doi.org/10.4172/2150-3494.1000197
  19. W. Szymański, M. Skiba, A. Błachowski. Mineralogy of Fe–Mn nodules in albeluvisols in the Carpathian Foothills, Poland. Geoderma, 217 (2014) 102-110. https://doi.org/10.1016/j.geoderma.2013.11.008
  20. S. Alibeigi, M.R. Vaezi, Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+: Fe3+. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 31(11), (2008) 1591-1596. https://doi.org/10.1002/ceat.200800093
  21. M.M. Can, M. Coşkun, T. Fırat, A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds, 542 (2012) 241-247. https://doi.org/10.1016/j.jallcom.2012.07.091
  22. Z. Jia, J. Liu, Q. Wang, S. Li, Q. Qi, R. Zhu, Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater. Journal of Alloys and Compounds, 622 (2015) 587-595. https://doi.org/10.1016/j.jallcom.2014.10.125
  23. M. Tadic, N. Citakovic, M. Panjan, B. Stanojevic, D. Markovic, Đ. Jovanovic, V. Spasojevic, Synthesis, morphology and microstructure of pomegranate-like hematite (α-Fe2O3) superstructure with high coercivity. Journal of Alloys and Compounds, 543, (2012) 118-124. https://doi.org/10.1016/j.jallcom.2012.07.047
  24. X. Zhang, Y. Niu, Y. Li, X. Hou, Y. Wang, R. Bai, J. Zhao, Synthesis, optical and magnetic properties of α-Fe2O3 nanoparticles with various shapes. Materials letters, 99 (2013) 111-114. https://doi.org/10.1016/j.matlet.2013.02.070
  25. F.N. Sayed, V. Polshettiwar, Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Scientific reports, 5(1) (2015) 9733. https://doi.org/10.1038/srep09733
  26. G. Kandasamy, D. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. International journal of pharmaceutics, 496(2), (2015) 191-218. https://doi.org/10.1016/j.ijpharm.2015.10.058
  27. S. Shi, J-Y. Hwang, Microwave-assisted wet chemical synthesis: advantages, significance, and steps to industrialization. Journal of Minerals and Materials Characterization and Engineering, 2(2), (2003) 101-110. https://doi.org/10.4236/jmmce.2003.22009
  28. R.M. Cornel, U. Schwertmann, (1996). the iron oxides. Structure, properties, reactions and uses. Wiley-VCH GmbH, Germany.
  29. R.T. Rasheed, S.D. Al-Algawi, Annealing effect of SnO2 nanoparticles prepared by the sol–gel method. Journal of Advanced Physics, 5(3), (2016) 236-240. https://doi.org/10.1166/jap.2016.1262
  30. P. Mallick, B.N. Dash, X-ray diffraction and UV-visible characterizations of α-Fe2O3 nanoparticles annealed at different temperature. Nanoscience and Nanotechnology, 3(5), (2013) 130-134.
  31. J. Torrent, V. Barrón, Diffuse reflectance spectroscopy of iron oxides. Encyclopedia of surface and Colloid Science, 1 (2002) 1438-1446.
  32. J. Wang, W.B. White, J.H. Adair, Optical properties of hydrothermally synthesized hematite particulate pigments. Journal of the american Ceramic Society, 88(12), (2005) 3449-3454. https://doi.org/10.1111/j.1551-2916.2005.00643.x
  33. B.K. Pandey, A.K. Shahi, J.R.K. Kotnala, R. Gopal, Optical and magnetic properties of Fe2O3 nanoparticles synthesized by laser ablation/fragmentation technique in different liquid media. Applied Surface Science, 289 (2014) 462-471. https://doi.org/10.1016/j.apsusc.2013.11.009
  34. L. Dghoughi, B. Elidrissi. C. Berne de, M. Addou, M.A. Lamrani, M. Regragui, H. Erguig, Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis. Applied Surface Science, 253(4), (2006) 1823-1829. https://doi.org/10.1016/j.apsusc.2006.03.021
  35. N. Beermann, L. Vayssieres, S‐E. Lindquist, A. Hagfeldt, Photo electrochemical studies of oriented nanorod thin films of hematite. Journal of the Electrochemical Society, 147(7) (2000) 2456. https://doi.org/10.1149/1.1393553
  36. N. Ozer, F. Tepehan. Optical and electrochemical characteristics of sol–gel deposited iron oxide films. Solar Energy Materials and Solar Cells, 56(2), (1999) 141-152. https://doi.org/10.1016/S0927-0248(98)00152-4
  37. M. Tang, B. Sun, J. Huang, J. Gao, C. Ming Li. High performance white-light-controlled resistance switching memory of an Ag/α-Fe2O3/FTO thin film. Rsc Advances, 6(30) (2016) 25028-25033. https://doi.org/10.1039/C5RA24057C
  38. M. Gartner, M. Crisan, A. Jitianu, R. Scurtu, R. Gavrila, I. Opera, M. Zaharescu, Spectroellipsometric Characterization of Multilayer Sol-Gel Fe2O3 Films. Journal of Sol-Gel Science and Technology, 26 (2003) 745-748. https://doi.org/10.1023/A:1020706423230
  39. R.N. Goyal, A.K. Pandey, D. Kaur, A. Kumar, Fabrication of α-Fe2O3 nanopowder modified glassy carbon electrode for applications in electrochemical sensing. Journal of nanoscience and nanotechnology, 9(8) (2009) 4692-4699. https://doi.org/10.1166/jnn.2009.1278
  40. P. Shikha, B.S. Randhawa, T.S. Kang, Greener synthetic route for superparamagnetic and luminescent α-Fe2O3 nanoparticles in binary mixtures of ionic liquid and ethylene glycol. RSC Advances, 5(63), (2015) 51158-51168. https://doi.org/10.1039/C5RA07218B
  41. L. El Mir, Luminescence properties of calcium doped zinc oxide nanoparticles. Journal of Luminescence, 186 (2017) 98-102. https://doi.org/10.1016/j.jlumin.2017.02.029
  42. P. Thomas, K.E. Abraham, Synthesis of Iron Oxide Nanoparticles and Study of Its Opticalproperties. SB Academic Review, (2012) 108-116
  43. G-Y. Zhang, YY. Xu, D-Z. Gao, Y-Q Sun, α-Fe2O3 nanoplates: PEG-600 assisted hydrothermal synthesis and formation mechanism. Journal of alloys and compounds, 509(3), (2011) 885-890. https://doi.org/10.1016/j.jallcom.2010.09.124
  44. L. Lu, L. Li, X. Wang, G. Li, Understanding of the finite size effects on lattice vibrations and electronic transitions of nano α-Fe2O3. The Journal of Physical Chemistry B, 109(36), (2005) 17151-17156. https://doi.org/10.1021/jp052780
  45. Y. Yamanoi, S. Nakashima, M. Katsura, Temperature dependence of reflectance spectra and color values of hematite by in situ, high-temperature visible micro-spectroscopy. American Mineralogist, 94(1), (2009) 90-97. https://doi.org/10.2138/am.2009.2779
  46. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in physics, 7 (2017) 3007-3015. https://doi.org/10.1016/j.rinp.2017.07.066
  47. Y.Y. Xu, D. Zhao, X.J. Zhang, W.T. Jin, P. Kashkarov, H. Zhang, Synthesis and characterization of single-crystalline α-Fe2O3 nanoleaves. Physica E: Low-dimensional Systems and Nanostructures, 41(5), (2009) 806-811. https://doi.org/10.1016/j.physe.2008.12.015
  48. H. Liu, P. Li, B. Lu, Y. Wei, Y. Sun, Transformation of ferrihydrite in the presence or absence of trace Fe (II): the effect of preparation procedures of ferrihydrite. Journal of Solid State Chemistry, 182(7), (2009) 1767-1771. https://doi.org/10.1016/j.jssc.2009.03.030
  49. Z. Jing, S. Wu, Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Materials Letters, 58(27-28), (2004) 3637-3640. https://doi.org/10.1016/j.matlet.2004.07.010
  50. E. Darezereshki, One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite, Materials Letters, 65(4), (2011) 642-645. https://doi.org/10.1016/j.matlet.2010.11.030
  51. R.D. Ambashta, M. Sillanpa, Water purification using magnetic assistance: a review. Journal of hazardous materials, 180(1-3) (2010) 38-49. https://doi.org/10.1016/j.jhazmat.2010.04.105
  52. Y.A. Koksharov, Magnetism of nanoparticles: effects of size, shape, and interactions. Magnetic nanoparticles, (2009) 197-254. https://doi.org/10.1002/9783527627561.ch6
  53. A. Akbarzadeh, M. Samiei, S.Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale research letters, 7(144), (2012) 1-13. https://doi.org/10.1186/1556-276X-7-144
  54. D. Ramimoghadam, S. Bagheri, S.B.A. Hamid Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 368 (2014) 207-229. https://doi.org/10.1016/j.jmmm.2014.05.015
  55. U. Schwertmann, J. Friedl, H. Stanjek, From Fe (III) ions to ferrihydrite and then to hematite. Journal of colloid and interface science, 209(1), (1999) 215-223. https://doi.org/10.1006/jcis.1998.5899
  56. Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceramics International, 42(1) (2016) 9-34. https://doi.org/10.1016/j.ceramint.2015.08.144
  57. J. Torrent, V. Barrón, Diffuse reflectance spectroscopy of iron oxides. Encyclopedia of surface and Colloid Science, 1 (2002) 1438-1446.
  58. A.H. Lu, E.E. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8) (2007) 1222-1244. https://doi.org/10.1002/anie.200602866
  59. S. Shylesh, V. Schünemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition, 49(20), (2010) 3428-3459. https://doi.org/10.1002/anie.200905684
  60. E. Darezereshki, F. Bakhtiari, M. Alizadeh, A.B. Vakylabad, M. Ranjbar, Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles. Materials Science in Semiconductor Processing, 15(1), (2012) 91-97. https://doi.org/10.1016/j.mssp.2011.09.009
  61. E.N. Taylor, T.J. Webster, The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. International journal of nanomedicine, (2009) 145-152. https://doi.org/10.2147/IJN.S5976
  62. S. Ankanna, N. Savithramma, Biological synthesis of silver nanoparticles by using stem of Shorea tumbuggaia Roxb. and its antimicrobial efficacy. Asian Journal of Pharmaceutical and Clinical Research, 4(2) (2011) 137-141.
  63. L. Qj, Z. Xu, X. Tiang, C. Hu, X. Zou, Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), (2004) 2693-2700. https://doi.org/10.1016/j.carres.2004.09.007
  64. A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T. Nevěčná, R. Zbořil, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110(33), (2006) 16248-16253. https://doi.org/10.1021/jp063826h