Abstract

This present work is to investigate the antibacterial activity of CeO2 nanoparticles on five foodborne pathogens. Low-temperature solid-state reactions were used to create co-doped CeO2 nanoparticles (Co-CeO2 NPs). In the current work, the impact of Co-doping on polycrystalline CeO2 samples synthesized using the co-precipitation method at room temperature for Co-doping concentrations of 0.5%, 1%, 3%, and 5% is discussed. Rietveld refinement of the X-ray diffraction patterns confirms that the Co-doped CeO2 samples have a face-centred cubic structure. This shows that the Co ions have been successfully integrated into the CeO2 lattice. Also, the UV-Vis-NIR absorption spectra confirm that redshifts do happen in the Co-doped CeO2 samples, which shows that the band gap energy decreases as the number of Co ions grows. In an antibacterial test against five pathogenic microbes, S. aureus, M. luteus, Enterobacter aerogenes, S. typhi, and Pseudomonas aeruginosa, Co-doped cerium oxide nanoparticles significantly slowed the growth of all five pathogens, both in liquid and solid growth conditions. These results show that Co-doped CeO2 nanoparticles have strong antibacterial properties against foodborne pathogens. This suggests that they could be used as promising bionanomaterials for in vivo therapeutic uses.

Keywords

Foodborne pathogens, Cobalt doped cerium oxide, Antibacterial activity, Spherical Nanoparticles,

Downloads

Download data is not yet available.

References

  1. M. Ghiasi, A. Malekzadeh, Synthesis, characterization and photocatalytic properties of lanthanum oxy-carbonate, lanthanum oxide and lanthanum hydroxide nanoparticles, Superlattices and Microstructures, 77 (2015) 295-304. https://doi.org/10.1016/j.spmi.2014.09.027
  2. K.C. Taylor. J.R. Anderson, M. Boudart (Eds.), (1984) Catalysis Science and Technology, Springer-Verlag, Berlin, 5 120-123.
  3. Commission Recommendation on the definition of nanomaterial (Text with EEA relevance)(2011/696/EU) Journal of the European Union (2011). https://eur-lex.europa.eu/eli/reco/2011/696/oj
  4. A. Arumugam, C. Karthikeyan, A.S. Haja Hameed, K. Gopinath, S. Gowri, V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties, Materials Science and Engineering: C, 49 (2015) 408-415. https://doi.org/10.1016/j.msec.2015.01.042
  5. M.A. Dar, R. Gul, P. Karuppiah, N.A. Al-Dhabi, A.A. Alfadda, Antibacterial Activity of Cerium Oxide Nanoparticles against ESKAPE Pathogens, Crystals, 12(2) 2022 179. https://doi.org/10.3390/cryst12020179
  6. J. Raczkowska, Y. Stetsyshyn, K. Awsiuk, M. Brzychczy-Włoch, T. Gosiewski, B. Jany, O. Lishchynskyi, Y. Shymborska, S. Nastyshyn, A. Bernasik, H. Ohar, F. Krok, D. Ochońska, A. Kostruba, A. Budkowski, “Command” surfaces with thermo-switchable antibacterial, Materials Science and Engineering: C, 103 (2019) 109806. https://doi.org/10.1016/j.msec.2019.109806
  7. S. Atiq, S.A. Siddiqi, F. Abbas, M. Saleem, S.M. Ramay, Carriers‐assisted Enhanced Ferromagnetism in Al‐doped ZnMnO Nano‐crystallites, Chinese Journal of Chemical Physics, 26 (2013) 457-461. https://doi.org/10.1063/1674-0068/26/04/457-461
  8. G. Killivalavan, B. Sathyaseelan, G. Kavitha, I. Baskarann, K. Senthilnathan, D. Sivakumar, N. Karthikeyan, E. Manikandan, M. Maaza, Cobalt Metal ion Doped Cerium Oxide (CoCeO2) Nanoparticles Effect Enhanced Photocatalytic Activity, MRS Advances, 5 (2020) 2503–2515 https://doi.org/10.1557/adv.2020.296
  9. H.A. Alshaikhi, A.M. Asiri, K.A. Alamry, H.M. Marwani, S.Y. Alfifi, S.B. Khan, Copper Nanoparticles Decorated Alginate/Cobalt-Doped Cerium Oxide Composite Beads for Catalytic Reduction and Photodegradation of Organic Dyes, Polymers, 14(20) (2022) 4458. https://doi.org/10.3390/polym14204458
  10. M. Darroudi, M. Sarani, R.K. Oskuee, A.K. Zak, H.A. Hosseini, L. Gholami, Green synthesis and evaluation of metabolic activity of starch mediated nanoceria, Ceramics International, 40(1) B (2014) 2041-2045. https://doi.org/10.1016/j.ceramint.2013.07.116
  11. P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, H.B. Premkumar, MgO:Eu3+ red nanophosphor: Low temperature synthesis and photoluminescence properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121 (2014) 46-52. https://doi.org/10.1016/j.saa.2013.10.060
  12. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, C. Shivakumara, R.P.S. Chakradhar, Effect of different fuels on structural, thermo and photoluminescent properties of Gd2O3 nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96 (2012) 532-540. https://doi.org/10.1016/j.saa.2012.04.067
  13. E-I Negishi, G. Wang, H. Rao, Z. Xu, Alkyne Elementometalation−Pd-Catalyzed Cross-Coupling Toward Synthesis of All Conceivable Types of Acyclic Alkenes in High Yields, Efficiently, Selectively, Economically, and Safely: “Green” Way, The Journal of Organic Chemistry, 75(10) (2010) 3151-3182. https://doi.org/10.1021/jo1003218
  14. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M.Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Applied Physics Letters, 84(8) (2004) 1332–1334. https://doi.org/10.1063/1.1650041
  15. M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, H.Y. Li,On the origin of ferromagnetism in CeO2 nanocubes, Applied Physics Letters, 93 (2008) 062505. https://doi.org/10.1063/1.2972118
  16. S. Atiq, S.A. Siddiqi, F. Abbas, M. Saleem, S.M. Ramay, Carrier-assisted enhanced ferromagnetism in Al-doped ZnMnO Nano-crystallites, Chinese Journal of Chemical Physics, 26(2013) 457- 461. https://doi.org/10.1063/1674-0068/26/04/457-461
  17. S. Kumar, Y.J. Kim, B.H. Koo, H. Choi, C.G. Lee, Structural and Magnetic Properties of Co Doped CeO2 Nano-Particles, IEEE Transactions on Magnetics, 45(6) (2009) 2439-2441. https://doi.org/10.1109/TMAG.2009.2018602
  18. V. Fernandes, J.J. Klein, N. Mattoso, D.H. Mosca, E. Silveira, E. Ribeiro, W.H. Schreiner, J. Varalda, A.J.A. de Oliveira, Room temperature ferromagnetism in Co-doped CeO2films on Si(001) Physical Review B, 75(2007) 121304-121309. https://doi.org/10.1103/PhysRevB.75.121304
  19. L.M. Wagner, M.K. Danks, New therapeutic targets for the treatment of high-risk neuroblastoma, Journal of Cellular Biochemistry, 107(2009) 46-57. https://doi.org/10.1002/jcb.22094
  20. M. Volmer, J. Neamtu, Magnetic field sensors based on Permalloy multilayers and nanogranular films, Journal of Magnetism and Magnetic Materials, 316(2) (2014) e265-e268. https://doi.org/10.1016/j.jmmm.2007.02.115
  21. A. Lateef, S.M. Oladejo, P.O. Akinola, D.A. Aina, L.S. Beukes, B.I. Folarin, E.B. Gueguim-Kana, Facile synthesis of silver nanoparticles using leaf extract of Hyptis suaveolens (L.) Poit for environmental and biomedical applications, IOP Conference Series: Materials Science and Engineering, 805 (2020) 012042. https://doi.org/10.1088/1757-899X/805/1/012042
  22. P. Kanmani, S.T.Lim, Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens, Process Biochemistry, 48(7) (2013) 1099-1106. https://doi.org/10.1016/j.procbio.2013.05.011
  23. S. Malathi, K. Jagathy, A. Ram Kumar, S. Selvaraj, An In Vivo Synergistic Research on the Assessment of the Phytocompound Capped Silver Nanoparticles from Raphanus sativus Leaf Extract and Curcuma longa Against UTI-Causing E.coli., Physical Chemistry Research, 10(4) (2022) 581-588.
  24. M. Mani, R. Harikrishnan, P. Purushothaman, S. Pavithra, P. Rajkumar, S. Kumaresan, D.A. Al Farraj, M.S. Elshikh, B.Balasubramanian, K. Kaviyarasu, Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity, Environmental Research, 202 (2021) 111627. https://doi.org/10.1016/j.envres.2021.111627
  25. P. Maleki, F. Nemati, A. Gholoobi, A. Hashemzadeh, Z. Sabouri, M. Darroudi, Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity, Inorganic Chemistry Communications, 131 (2021) 107682. https://doi.org/10.1016/j.inoche.2021.108762
  26. I.A. Farias, C.C. Santos, F.C. Sampaio, Antimicrobial Activity of Cerium Oxide Nanoparticles on Opportunistic Microorganisms: A Systematic Review, BioMed Research International, 1923606 (2018) 1-14. https://doi.org/10.1155/2018/1923606
  27. R. Suresh, A. Yogeshwaran, P. Logababu, P.S. Sharath, G. Aakash, V. Pugazhendhi, Empowerment the antibacterial activity of Silver Oxide nanoparticles using Woodfordia Fruticosa flower extract, International Research Journal of Multidisciplinary Technovation, 5(4) (2023) 1-11. https://doi.org/10.54392/irjmt2341
  28. H.H. Lara, N.V. Ayala-Núñez, L.C.I. Turrent, C.R. Padilla, Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria, World Journal of Microbiology and Biotechnology, 26 (2010) 615–621. https://doi.org/10.1007/s11274-009-0211-3
  29. I. Sondi, O. Siiman, E. Matijević, Synthesis of CdSe nanoparticles in the presence of aminodextran as stabilizing and capping agent, Journal of Colloid and Interface Science, 275(2) (2004) 503-507. https://doi.org/10.1016/j.jcis.2004.02.005
  30. M.P. Nikolova, M.S. Chavali, Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics. 2020; 5(2):27. https://doi.org/10.3390/biomimetics5020027
  31. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. https://clsi.org/media/3481/m100ed30_sample.pdf
  32. H.A. Hemeg, Nanomaterials for alternative antibacterial therapy, International Journal of Nanomedicine, 12 (2017) 8211–8225. https://doi.org/10.2147/IJN.S132163
  33. M. Mani, M.K. Okla, S. Selvaraj, A. Ram Kumar, S. Kumaresan, A. Muthukumaran, K. Kaviyarasu, M.A. El-Tayeb, Y.B. Elbadawi, K.S. Almaary, B.M.A. Almunqedhi, A novel biogenic Allium cepa leaf mediated silver nanoparticles for antimicrobial, antioxidant, and anticancer effects on MCF-7 cellline, Environmental Research, 198 (2021) 111199. https://doi.org/10.1016/j.envres.2021.111199