Abstract

In this study, a semi-organic crystal of L-tryptophan hydrochloride (LTHC) has been synthesized and quality crystals has been grown using a slow evaporation technique. Singe crystal XRD confirms the monoclinic system with space group P21. UV optical studies displays the transmittance in the entire visible region. The Mulliken charge distribution and MEP mapping show significant charge transfer due to nucleophilic and electrophilic moieties. The molecule's chemical reactivity was examined using HOMO-LUMO and MESP investigations. The crystal's nonlinear properties were studied using the Kurtz-Perry method. These findings suggest that LTHC crystals may have potential applications in the field of nonlinear optics.

Keywords

Semi-organic, Single crystal, Optical, SHG, Nonlinear,

Downloads

Download data is not yet available.

References

  1. S. Ramteke, M. Anis, M. Baig, H. Algarni, G. Muley, Optimizing optical traits of ammonium zinc sulphate hydrate crystal exploiting Nd3+ for photonic device applications, Optik 197 (2019) 163219. https://doi.org/10.1016/j.ijleo.2019.163219
  2. S. Arockia Avila, A. Leo Rajesh, Growth and characterization of L-Glycine thiourea nonlinear optical single crystal for optoelectronic applications, Journal of Materials Science: Materials in Electronics, 28 (2017) 10893–10901. https://doi.org/10.1007/s10854-017-6868-8
  3. Y. Yang, X. Zhang, Z. Hu, Y. Wu, Organic Nonlinear Optical Crystals for Highly Efficient Terahertz-Wave Generation, Crystals. 13(1) (2023) 144. https://doi.org/10.3390/cryst13010144
  4. D. Abila Darling, S.E. Joema, P. Reena, Elucidation of optical, thermal, morphological and antimicrobial efficacy of L-tryptophan hydrochloride single crystals, Optik, 253 (2022) 168585. https://doi.org/10.1016/j.ijleo.2022.168585
  5. T. Takigawa, T. Ashida, Y. Sasada, M. Kakudo, The Crystal Structures of L-Tryptophan Hydrochloride and Hydrobromide, Bulletin of the Chemical Society of Japan, 39 (1966) 2369. https://doi.org/10.1246/bcsj.39.2369
  6. M.J. Frisch, et al., 2009, Gaussian 09, Revision C. 02. Gaussian, Inc., Wallingford CT.
  7. H.B. Schlegel, Optimization of equilibrium geometries and transition structures, Journal of Computational Chemistry, 3 (1982) 214-218. https://doi.org/10.1002/jcc.540030212
  8. R. Dennington, T. Keith, & J. Millam (2009), Gauss View, version 5, Semichem Inc., Shawnee Mission K S.
  9. P. Sangeetha, P. Jayaprakash, M. Nageshwari, C.S. Rathika Thaya Kumari Sutha, M. Prakash, G. Vinitha, M. Lydia, Caroline, Growth and characterization of an efficient new NLO single crystal L-phenylalanine D-methionine for frequency conversion and optoelectronic applications, Physica B, 525 (2017) 164-174. https://doi.org/10.1016/j.physb.2017.08.037
  10. G. Shanmugam, S. Brahadeeswaran, Spectroscopic, thermal and mechanical studies on 4-methylanilinium p-toluenesulfonate – a new organic NLO single crystal, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 95 (2012) 177–183, https://doi.org/10.1016/j.saa.2012.04.100
  11. M. Fleck, A.M. Petrosyan, Salts of Amino Acids: Crystallization, Structure and Properties, Springer, Dordrecht, 2014. https://doi.org/10.1007/978-3-319-06299-0
  12. F. De Proft & P. Geerlings, Conceptual and Computational DFT in the Study of Aromaticity, Chemical Reviews, 101 (2001) 1451–1464. https://doi.org/10.1021/cr9903205
  13. A. Gokila, Comprehensive understanding ofMethyl 2-Naphthyl Ether Molecule by Ab Initio Calculation method, International Research Journal of Multidisciplinary Technovation, 5(2) (2023) 19-33. https://doi.org/10.54392/irjmt2323
  14. S.K. Kurtz, and T.T. Perry, A Powder Technique for the Evaluation of Nonlinear Optical Materials, Journal of Applied Physics, 39 (1968) 3798. http://dx.doi.org/10.1063/1.1656857