Empowerment the antibacterial activity of Silver Oxide nanoparticles using Woodfordia Fruticosa flower extract

Suresh R
Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India.
Yogeshwaran A
Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India.
Logababu P
Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India.
Sharath P.S
Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India.
Aakash G
Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India.
Pugazhendhi V
Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641 020, Tamil Nadu, India.


Plum Analytics


The undeniable importance of human well-being microorganisms to strengthen the antimicrobial resistance behavior of inorganic metals has created an avenue towards the development of green nanotechnology. However, numerous physiological issues and challanges need to be addressed from the aspects of microbiological and nanotechnological. In this present work, an endeavour has been made to synthesis silver oxide nanoparticles using Woodfordia Fruticosa flower extracts as reducing agent and also examined their antibacterial activity against S. aureus and E. Coli. The utmost antibacterial activity was obtained for the Ag2O nanoparticles prepared with extract against S. Aureus than E. Coli.


  • Silver oxide,
  • Ag2O,
  • Dual phase,
  • Cubic,
  • Monoclinic and Antibacterial activity


  1. P. Maleki, F. Nemati, A. Gholoobi, A. Hashemzadeh, Z. Sabouri, M. Darroudi, Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity, Inorganic Chemistry Communications, 131 (2021) 107682. https://doi.org/10.1016/j.inoche.2021.108762
  2. C.N. Fries, E.J. Curvino, J.L. Chen, S.R. Permar, G.G. Fouda, J.H. Collier, Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health, Nature Nanotechnology, 16 (2021) 1-14. https://doi.org/10.1038/s41565-020-0739-9
  3. R. Mohammadinejad, S. Karimi, S. Iravani, R.S. Varma, Plant-derived nanos-tructures: types and applications, Green Chemistry, 18 (2016) 20-52. https://doi.org/10.1039/C5GC01403D
  4. B.N. Rashmi, S.F. Harlapur, B. Avinash, C.R. Ravikumar, H.P. Nageswarupa, M.R. Anil Kumar, K. Gurushantha, M.S. Santhosh, Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies, Inorganic Chemistry Communications, 111 (2020) 107580. https://doi.org/10.1016/j.inoche.2019.107580
  5. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, Journal of Advanced Research, 7(1) (2016) 17-28. https://doi.org/10.1016/j.jare.2015.02.007
  6. J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, M. Jose-Yacaman, Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles, Langmuir, 19(4) (2003) 1357-1361. https://doi.org/10.1021/la020835i
  7. M.S. Samuel, S. Jose, E. Selvarajan, T. Mathimani, A. Pugazhendhi, Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol, Journal of Photochemistry and Photobiology B: Biology, 202 (2020) 111642. https://doi.org/10.1016/j.jphotobiol.2019.111642
  8. S.P. Deshmukh, S.M. Patil, S.B. Mullani, S.D. Delekar, Silver nanoparticles as an effective disinfectant: A review, Materials Science and Engineering C, 97 (2019) 954-965. https://doi.org/10.1016/j.msec.2018.12.102
  9. M. Malik, M.A. Iqbal, Y. Iqbal, M. Malik, S. Bakhsh, S. Irfan, R. Ahmad, P.V. Pham, Biosynthesis of silver nanoparticles for biomedical applications: A mini review, Inorganic Chemistry Communications, 145 (2022) 109980. https://doi.org/10.1016/j.inoche.2022.109980
  10. R.A. Hamouda, M.H. Hussein, R.A. Abo-elmagd, S.S. Bawazir, Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica, Scientific Reports, 9 (2019) 1-17. https://doi.org/10.1038/s41598-019-49444-y
  11. S. Das, L. Langbang, M. Haque, V.K. Belwal, K. Aguan, A.S. Roy, Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies, Journal of Pharmaceutical Analysis, (2021) 422-434. https://doi.org/10.1016/j.jpha.2020.12.003
  12. M. Sankareswari, C. Amutha, V.S. Vasantha, M. Arunpandian, E.R. Nagarajan, Biosynthesized silver nanoparticles using Rosary Pea seed Extract: Evaluation of Antibacterial, cytotoxic and photocatalytic activity, Inorganic Chemistry Communications, 145 (2022) 109977. https://doi.org/10.1016/j.inoche.2022.109977
  13. P. Kanniah, P. Chelliah, J.R. Thangapandi, G. Ghanadhas, V. Mahendran, M. Robert, Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite, International Journal of Biological Macromolecules, 189 (2021) 18-33. https://doi.org/10.1016/j.ijbiomac.2021.08.056
  14. S. Kummara, M.B. Patil, T. Uriah, Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles–a comparative study, Biomedicine & Pharmacotherapy, 84 (2016) 10-21. https://doi.org/10.1016/j.biopha.2016.09.003
  15. S. Vankdoth, A. Veliandi, M. Sarvepalli, M. Vangalapati, Role of plant (tulasi, neem and turmeric) extracts in defining the morphological, toxicity and catalytic properties of silver nanoparticles, Inorganic Chemistry Communications, 140 (2022) 109476. https://doi.org/10.1016/j.inoche.2022.109476
  16. Wani I.A, Khatoon S, Ganguly A, Ahmed J, Ganguli K.A, Ahmed T, Silver Nanoparticles: Large scale solvothermal synthesis and optical properties, Materials Research Bulletin, 45(8) (2010) 1033-1038. https://doi.org/10.1016/j.materresbull.2010.03.028
  17. K. Paulkumar, G. Gnanajobitha, M. Vanaja, M. Pavunraj, G. Annadurai, Green synthesis of silver nanoparticle and silver based chitosan bionanocomposite using stem extract of Saccharum officinarum and assessment of its antibacterial activity, Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(3) (2017) 035019. https://doi.org/10.1088/2043-6254/aa7232
  18. R. Suresh, V. Ponnuswamy, R. Mariappan, Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method, Applied Surface Science, 273 (2013) 457-464. https://doi.org/10.1016/j.apsusc.2013.02.062
  19. P.K. Das, S. Goswami, A. Chinniah, N. Panda, S. Banerjee, N.P. Sahu, B. Achari, Woodfordia fruticosa: Traditional uses and recent findings, Journal of Ethnopharmacology, 110(2) (2007) 189-199. https://doi.org/10.1016/j.jep.2006.12.029
  20. Y. Belaiche, A. Khelef, S.E. Laouini, A. Bouafia, M.L. Tedjani, A. Barhoum, Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of artemisia herba-alba as reducing and capping agents, Romanian Journal of Materials, 51(3) (2021) 342-352.
  21. Z.H. Dhoondia, H. Chakraborty, Lactobacillus Mediated Synthesis of Silver Oxide Nanoparticles, Nanomaterials and Nanotechnology, 2 (2012). https://doi.org/10.5772/55741
  22. K. Baruah, M. Haque, L. Langbang, S. Das, K. Aguan, A.S. Roy, Ocimum sanctum mediated green synthesis of silver nanoparticles: A biophysical study towards lysozyme binding and anti-bacterial activity, Journal of Molecular Liquids, 337 (2021) 116422. https://doi.org/10.1016/j.molliq.2021.116422
  23. M. Mani, R. Harikrishnan, P. Purushothaman, S. Pavithra, P. Rajkumar, S. Kumaresan, Dunia A. Al Farraj, Mohamed Soliman Elshikh, Balamuralikrishnan Balasubramanian, K. Kaviyarasu, Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity, Environmental Research, 202 (2021) 111627. https://doi.org/10.1016/j.envres.2021.111627
  24. G. Maheshwaran, A. Nivedhitha Bharathi, M. Malai Selvi, M. Krishna Kumar, R. Mohan Kumar, S. Sudhahar, Green synthesis of Silver oxide nanoparticles using Zephyranthes Rosea flower extract and evaluation of biological activities, Journal of Environmental Chemical Engineering, 8(5) (2020) 104137, https://doi.org/10.1016/j.jece.2020.104137
  25. U.P. Manik, Amol Nande, Swati Raut, S.J. Dhoble, Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica, Results in Materials, 6 (2020) 100086. https://doi.org/10.1016/j.rinma.2020.100086
  26. Firas H. Abdulrazzak, Ahmed M. Abbas, Mostefe Khalid Mohammed, Israa Mohammed Radhi, Ahmed E. Abdullatif, Hamsa M. Yaseen, Duah Ayad Yas, Ayad F. Alkaim, Preparation and Characterization of Silver Oxide Nanoparticles (AgNPs) and Evaluation the Ratios of Oxides, Journal of Engineering and Applied Sciences, 14(5 SI) 2019 9177-9184. https://doi.org/10.36478/jeasci.2019.9177.9184
  27. J. Singh, A. Mehta, M. Rawat, S. Basu, Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction, Journal of Environmental Chemical Engineering, 6 (2018) 1468-1474. https://doi.org/10.1016/j.jece.2018.01.054
  28. H. Rong, X. Qian, J. Yin, Z. Zhu, Preparation of polychrome silver nanoparticles in different solvents, Journal of Material Chemistry, 12 (2002) 3783‐3786. https://doi.org/10.1039/B205214H
  29. M. Masum, M. Islam, M. Siddiqa, K.A. Ali, Y. Zhang, Y. Abdallah, E. Ibrahim, W. Qiu, C. Yan, R. Li, Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe, Frontiers in Microbiology, 10 (2019) 820. doi.org/10.3389/fmicb.2019.00820
  30. N. Vigneshwaran, R.P. Nachane, R.H. Balasubramanya, P.V. Varadarajan, A novel one-pot green synthesis of stable silver nanoparticles using soluble starch, Carbohydrate Research, 341(12) (2006) 2012-2018. https://doi.org/10.1016/j.carres.2006.04.042
  31. V. Chauhan, D. Gupta, N. Koratkar, Rajesh Kumar, Phase transformation and enhanced blue photoluminescence of zirconium oxide poly-crystalline thin film induced by Ni ion beam irradiation, Scientific Reports, 11 (2021) 17672. https://doi.org/10.1038/s41598-021-96961-w
  32. W.R. Li, X.B. Xie, Q.S. Shi, S.S. Duan, Y.S. Ouyang, Y. Ben Chen, Antibacterial effect of silver nanoparticles on Staphylococcus aureus, Biometals, 24 (2011) 135-141. https://doi.org/10.1007/s10534-010-9381-6
  33. W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, and Y. Ben Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Applied Microbiology and Biotechnology, 85 (2010) 1115-1122. https://doi.org/10.1007/s00253-009-2159-5
  34. M. Adibhesami, M. Ahmadi, A.A. Farshid, F. Sarrafzadeh-Rezaei, B. Dalir-Naghadeh, Effects of silver nanoparticles on Staphylococcus aureus contaminated open wounds healing in mice: An experimental study, Veterinary Research Forum, 8 (2017) 23-28.
  35. P. Imchen, M. Ziekhrü, B.K. Zhimomi, T. Phucho, Biosynthesis of silver nanoparticles using the extract of Alpinia galanga rhizome and Rhus semialata fruit and their antibacterial activity, Inorganic Chemistry Communications, 142(2022) 109599. https://doi.org/10.1016/j.inoche.2022.109599
  36. G. Tailor, B.J. Yadav, J. Chaudhary, M. Joshi, J. Suvalka, Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity, Biochemistry and Biophysics Reports, 24 (2020) 100848. https://doi.org/10.1016/j.bbrep.2020.100848



Article Details

Volume 5, Issue 4, Year 2023

Published 2023-05-23


Download data is not yet available.

Plum Analytics