Abstract
Biomaterials have become a key element in revolutionizing regenerative medicine, providing novel approaches to address a wide range of medical issues. Recent developments in biomaterials are tailored for conditions like osteoarthritis (OA), chronic wounds, erectile dysfunction (ED), and post-surgical tumor management. Composite hydrogels, such as GelMA/dECM, have shown promise in reducing chondrocyte pyroptosis and promoting osteochondral repair by recruiting mesenchymal stem cells. Additionally, the creation of MnO2 at CeOx-GAMP as a radiosensitizer demonstrates the potential of nanomaterials to activate the STING pathway, enhancing the effectiveness of radiotherapy. Functional hydrogels are being studied for skin wound healing applications, utilizing electric field stimulation and real-time healing monitoring through impedance mapping. Enzyme engineering, such as ChASE37, has proven effective in breaking down inhibitory proteoglycans in the central nervous system, aiding neuronal regeneration. The use of NIR-responsive hydrogels loaded with polydeoxyribonucleotides highlights innovative techniques for treating chronic wounds by enabling targeted drug delivery and promoting angiogenesis. For nerve injuries, magnetic mesoporous silica nanoparticles loaded with neurotrophic peptides have shown potential in restoring erectile function. Lastly, biomimetic nanofiber patches inspired by butterfly wings combine the advantages of tumor cell destruction and wound healing. These advancements exemplify the diverse applications of biomaterials, emphasizing their role in improving therapeutic efficacy and patient outcomes. As the field progresses, biomaterials hold the potential to dramatically transform healthcare and elevate the quality of life for millions worldwide.
Keywords
Biogenerate, Regenerative medicine, Osteoarthritis, Chronic Wounds, Nanomaterials, Tissue Regeneration,Downloads
References
- A.S. Mao, D.J. Mooney, Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences of the United States of America, 112(47), (2015) 14452–14459.
- Jaklenec, A. Stamp, E. Deweerd, A. Sherwin, R. Langer, Progress in the tissue engineering and stem cell industry “are we there yet?. Tissue Engineering Part B: Reviews, 18(3) (2012)155–166.
- Yang, N.T. Blum, J. Lin, J. Qu, P. Huang, Biomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Science Bulletin, 65(17), (2020) 1489-1504.
- S. Castañeda-Rodríguez, M. González-Torres, R.M. Ribas-Aparicio, M.L. Del Prado‑Audelo, G. Leyva‑Gómez, E.S. Gürer, J. Sharifi‑Rad, Recent advances in modified poly (lactic acid) as tissue engineering materials. Journal of biological engineering, 17(1), (2023) 21.
- B. Cecen, S. Hassan, X. Li, Y.S. Zhang, Smart Biomaterials in Biomedical Applications: Current Advances and Possible Future Directions. Macromolecular bioscience, 24(3), (2024) e2200550.
- E.J. Lee, F.K. Kasper, A.G. Mikos, Biomaterials for tissue engineering. Annals of biomedical engineering, 42(2), (2014) 323–337.
- R. Geevarghese, S.S. Sajjadi, A. Hudecki, S. Sajjadi, N.R. Jalal, T. Madrakian, M. Ahmadi, M.K.W. Biegun, S. Ghavami, W. Likus, K. Siemianowicz, M.J. Łos, Biodegradable and non-biodegradable biomaterials and their effect on cell differentiation. International Journal of Molecular Sciences, 23(24), (2022) 16185.
- M. Zhang, W. Hu, C. Cai, Y. Wu, J. Li, S. Dong, Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Materials Today Bio, 14, (2022) 100223.
- K. Valachová, M.E. Hassan, L. Soltés, Hyaluronan: Sources, Structure, Features and Applications. Molecules, 29(3), (2024) 739.
- Y.H. Liao, S.A. Jones, B. Forbes, G.P. Martin, M.B. Brown, Hyaluronan: pharmaceutical characterization and drug delivery. Drug delivery, 12(6), (2005) 327-342.
- T. Kobayashi, T. Chanmee, N. Itano, Hyaluronan: Metabolism and Function. Biomolecules, 10, (2020)1525.
- H. Yang, L. Song, Y. Zou, D. Sun, L. Wang, Z. Yu, J. Guo, Role of Hyaluronic Acids and Potential as Regenerative Biomaterials in Wound Healing. ACS Applied Bio Materials, 4, (2021) 311–324.
- Q. Yao, Y.W. Zheng, Q.H. Lan, L. Kou, H.L. Xu, Y.Z. Zhao, Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Materials Science and Engineering: C, 104, (2019) 109942.
- M. Wang, Z. Yuan, N. Ma, C. Hao, W. Guo, G. Zou, Y. Zhang, M. Chen, S. Gao, J. Peng, A. Wang, Y. Wang, X. Sui, W. Xu, S. Lu, S. Liu, Q. Guo, Advances and Prospects in Stem Cells for Cartilage Regeneration. Stem Cells International, 2017, (2017) 4130607.
- S. Sun, Y. Cui, B. Yuan, M. Dou, G. Wang, H. Xu, J. Wang, W. Yin, D. Wu, C. Peng, Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Frontiers in bioengineering and biotechnology, 11, (2023) 1117647.
- R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta biomaterialia, 10(6), (2014) 2341-2353.
- G. Satchanska, S. Davidova, P.D. Petrov, Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers, 16(8), (2024) 1159.
- Hasan, M. Morshed, A. Memic, S. Hassan, T.J. Webster, H.E. Marei, Nanoparticles in tissue engineering: applications, challenges, and prospects. International journal of nanomedicine, 13, (2018) 5637–5655.
- X. Liang, Z. Wang, S. Wang, F. Ruan, Y. Zhang, D. Shao, X. Liu, F. Chen, X. Shi, Magnetic mesoporous silica nanoparticles loaded with peptides for the targeted repair of cavernous nerve injury underlying erectile dysfunction. Biomaterials, 314, (2025) 122811.
- N. Palani, P. Vijayakumar, P. Monisha, S. Ayyadurai, S. Rajadesingu, Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. Journal of Nanobiotechnology, 22(1), (2024) 211.
- R. Vasita, D.S. Katti, Nanofibers and their applications in tissue engineering. International journal of nanomedicine, 1(1), (2006) 15–30.
- D. Convertino, M.L. Trincavelli, C. Giacomelli, L. Marchetti, C. Coletti, Graphene-based nanomaterials for peripheral nerve regeneration. Frontiers in Bioengineering and Biotechnology, 11, (2023) 1306184.
- J. Meng, J. Lu, C. Jiang, L. Deng, M. Xiao, J. Feng, T. Ren, Q. Qin, S. Guo, H. Wang, J. Yao, J. Li, Collagen hydrogel-driven pyroptosis suppression and combined microfracture technique delay osteoarthritis progression. Biomaterials, 314, (2025) 122817.
- A.C. Profeta, G.M. Prucher, Bioactive-glass in periodontal surgery and implant dentistry. Dental Materials Journal, 34(5), (2015) 559–571.
- W. Dong, M. Chen, C. Chang, T. Jiang, L. Su, C. Chen, G. Zhang, Remodeling of Tumor Microenvironment by Nanozyme Combined cGAS–STING Signaling Pathway Agonist for Enhancing Cancer Immunotherapy. International Journal of Molecular Sciences, 24, (2023) 13935.
- T. Zhang, C. Hu, W. Zhang, Y. Ruan, Y. Ma, D. Chen, Y. Huang, S. Fan, W. Lin, Y. Huang, K. Liao, H. Lu, J. Xu, J. Pi, X. Guo, Advances of MnO2 nanomaterials as novel agonists for the development of cGAS-STING-mediated therapeutics. Frontiers in Immunology, 14, (2023) 1156239.
- C. Yang, Y. Liang, N. Liu, M. Sun, Role of the cGAS-STING pathway in radiotherapy for non-small cell lung cancer. Radiation Oncology, 18, (2023) 145.
- M. Tan, Z. Gao, X. Wang, X. Wang, C. Lin, Y. Huang, W. Chen, Y. Zhang, Z. Hou, MnO2@ CeOx-GAMP radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities for radiosensitization-mediated STING pathway activation. Biomaterials, 314, (2025) 122797.
- L.C. Kloth, Electrical stimulation technologies for wound healing. Advances in wound care, 3(2), (2014) 81-90.
- Y. Shin, H.S. Lee, J.U. Kim, Y.H. An, Y.S. Kim, N.S. Hwang, D.H. Kim, Functional-hydrogel-based electronic-skin patch for accelerated healing and monitoring of skin wounds. Biomaterials, 314, (2025) 122802.
- Y. Sun, Y. Li, X. Ding, P. Xu, X. Jing, H. Cong, H. Hu, B. Yu, F.J. Xu, An NIR-responsive hydrogel loaded with polydeoxyribonucleotide nano-vectors for enhanced chronic wound healing. Biomaterials, 314, (2025) 122789.
- Rolls, R. Shechter, M. Schwartz, The bright side of the glial scar in CNS repair. Nature Reviews Neuroscience, 10(3), (2009) 235-241.
- .P. Tran, P.M. Warren, J. Silver, The biology of regeneration failure and success after spinal cord injury. Physiological reviews, 98(2), (2018) 881-917.
- S. Avram, S. Shaposhnikov, C. Buiu, M. Mernea, Chondroitin sulfate proteoglycans: structure-function relationship with implication in neural development and brain disorders. BioMed research international, 2014, (2014) 642798.
- R. Yang, Y. Zhang, J. Kang, C. Zhang, B. Ning, Chondroitin Sulfate Proteoglycans Revisited: its Mechanism of Generation and Action for Spinal Cord Injury. Aging and disease, 15(1), (2024)153–168.
- J. Hu, L.Q. Jin, M.E. Selzer, Inhibition of central axon regeneration: perspective from chondroitin sulfate proteoglycans in lamprey spinal cord injury. Neural regeneration research, 17(9), (2022) 1955–1956.
- N.L. Khait, S. Zuccaro, D. Abdo, H. Cui, R. Siu, E. Ho, C.M. Morshead, M.S. Shoichet, Redesigned chondroitinase ABC degrades inhibitory chondroitin sulfate proteoglycans in vitro and in vivo in the stroke-injured rat brain. Biomaterials, 314, (2025) 122818.
- G. Corona, D.M. Lee, G. Forti, D.B. O’Connor, M. Maggi, N. Pendleton, G. Bartfai, S. Boonen, F.F. Casanueva, J.D. Finn, A. Giwercman, T.S. Han, I.T. Huhtaniemi, K. Kula, M.E.J. Lean, M. Punab, A.J. Silman, D. Vanderschueren, F.C.W. Wu, T.W. O’Neill, EMAS Study Group. Age-related changes in general and sexual health in middle-aged and older men: results from the European Male Ageing Study (EMAS). The journal of sexual medicine, 7(4), (2010) 1362-1380.
- B.S. Sivamaruthi, D.U. Kapoor, R.R. Kukkar, M. Gaur, G.M. Elossaily, B.G. Prajapati, C. Chaiyasut, Mesoporous Silica Nanoparticles: Types, Synthesis, Role in the Treatment of Alzheimer’s Disease, and Other Applications. Pharmaceutics, 15 (2023) 2666.
- E. Rascol, M. Daurat, A. Da Silva, M. Maynadier, C. Dorandeu, C. Charnay, M. Garcia, J. Lai-Kee-Him, P. Bron, M. Auffan, W. Liu, B. Angeletti, J.M. Devoisselle, Y. Guari, M.Gary-Bobo, Biological Fate of Fe3O4 Core-Shell Mesoporous Silica Nanoparticles Depending on Particle Surface Chemistry. Nanomaterials, 7, (2017) 162.
- C. Tao, Y. Zhu, Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Dalton transactions (Cambridge, England : 2003), 43(41), (2014) 15482–15490.
- X. Ma, W. Yang, P. Nie, Z. Zhang, Z. Chen, H. Wei, Implantation of skin-derived precursor Schwann cells improves erectile function in a bilateral cavernous nerve injury rat model. Basic and clinical andrology, 33(1), (2023) 11.
- J.Q. Zhu, H.K. Lu, Z.Q. Cui, Y.C. Wang, Y.H. Li, W. Zhao, Q. Fu, Y.M. Xu, Y. Xu L.J. Song, Therapeutic potential of human umbilical cord blood mesenchymal stem cells on erectile function in rats with cavernous nerve injury. Biotechnology Letters, 37, (2015) 1515-1525.
- H. Zheng, K. Chen, Y. Dun, Y. Xu, A. Zhou, H. Ge, Y. Yang, X. Ning, Harnessing Nature’s Ingenuity to Engineer Butterfly-Wing-Inspired Photoactive Nanofiber Patches for Advanced Postoperative Tumor Treatment. Biomaterials, 314, (2025) 122808.
- P.P. Chen, H.P. Zhang, J. Ding, X.Y. Lin, X. Lu, C.S. Liu, Y. Tang, Carboxymethyl Konjac Glucomannan Conjugated Polydopamine Composites for Pb(II) Removal. Carbohydrate Polymers, 162, (2017) 62-70.
- J. Hu, D. Kai, H. Ye, L. Tian, X. Ding, S. Ramakrishna, X.J. Loh, Electrospinning of Poly(Glycerol Sebacate)-Based Nanofibers for Nerve Tissue Engineering. Materials Science and Engineering C, 70(2-1), (2017) 1089–1094.
- P. Tipduangta, P. Belton, L. Fabian, L.Y. Wang, H. Tang, M.D. Eddleston, S. Qi, Electrospun Polymer Blend Nanofibers for Tuneable Drug Delivery: The Role of Transformative Phase Separation. Molecular Pharmaceutics, 13(1), (2016) 25–39.
- K.T. Noh, H.Y. Lee, U.S. Shin, H.W. Kim, Composite Nanofiber of Bioactive Glass Nanofiller Incorporated Poly (Lactic Acid) for Bone Regeneration. Materials Letters, 64(7), (2010) 802–805.
Articles
