Abstract
Cancer cell detection is critical to early diagnosis and treatment, aiming to improve patient outcomes through timely interventions. One promising approach involves using Fiber Bragg Grating (FBG) sensors due to their high sensitivity, biocompatibility, and ability to operate in real time. Due to the blood's refractive index, the wavelength shift in an FBG sensor varies, leading to a change in the effective refractive index. This occurs because the interaction between the FBG sensor and the surrounding medium, like blood, alters the light propagation within the fiber. The shift in the reflected wavelength corresponds to changes in the effective refractive index, which can be used to detect cancer- related anomalies in the blood. However, the proposed grating structure provides a wavelength shift between 1.43184 and 1.47500 with an effective refractive Index between 1.360015 and 1.401017. Besides all wavelength shifts and effective refractive Index have been proposed for Blood, cervical, Adrenal, Breast, and Skin cancers. The wavelength vs effective refractive index relationship for various cancerous cells has been established.
Keywords
FBG, Fibre Optics, Refractive Index, Resonant Wavelength Shift, Cancerous Cell,Downloads
References
- S.C. Sharan, H.K. Dhruva, T.M. Anitha, N. Roy, P. Sharan, R.M. Moudgalya, (2024) FBG Sensor Design and Analysis for Early Detection of Cancer, In 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, India.
- M. Al Ahmad, A. Najar, A. El Moutaouakil, N. Nasir, M. Hussein, S. Raji, A. Hilal-Alnaqbi, Label-free cancer cells detection using optical sensors. IEEE Access, 6, (2018) 55807-55814.
- M.A. Riza, Y.I. Go, S.W. Harun, R.R. Maier, FBG sensors for environmental and biochemical applications—A review, IEEE sensors journal, 20(14), (2020) 7614-7627.
- Prasad, S. Pant, S. Srivatzen, S. Asokan, A non-invasive breast cancer detection system using FBG thermal sensor array: A feasibility study, IEEE Sensors Journal, 21(21), (2021) 24106-24113.
- T. Parvin, K. Ahmed, A.M. Alatwi, A.N.Z. Rashed, Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection. Optical Review, 28, (2021) 134-143.
- M.M. Werneck, R.C.S.B. Allil, B.A. Ribeiro, F.V. de Nazaré, A guide to fiber Bragg grating sensors. Current trends in short-and long-period fiber gratings, (2013) 1-24.
- F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, A. Giannetti, Biosensing with optical fiber gratings. Nanophotonics, 6(4), (2017) 663-679.
- H. Fukano, D. Watanabe, S. Taue, Sensitivity characteristics of multimode-interference optical-fiber temperature-sensor with solid cladding material, IEEE Sensors Journal, 16(24), (2016) 8921-8927.
- A. Othonos, K. Kalli, G.E. Kohnke, Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing, Boston: Artech house, 3(2), (1999).
- G.B. Hocker, Fiber-optic sensing of pressure and temperature, applied optics, 18(9), (1979)1445-1448.
- W.P. Huang, Coupled-mode theory for optical waveguides: an overview, Journal of the Optical Society of America A, 11, (1994) 963-983.
- T. Erdogan, Fiber grating spectra. Journal of lightwave technology, 15(8), (1997) 1277-1294.
- S. Udoh, J. Njuguma, R. Prabhu, Modelling and simulation of fiber Bragg grating characterization for oil and gas sensing applications, In First International Conference on Systems Informatics, Modelling and Simulation, (2014) 213-218.
- M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, M.S. Uddin, Surface plasmon resonance based titanium coated biosensor for cancer cell detection, IEEE Photonics Journal, 11(4), (2019) 1-10.
- X.J. Liang, A.Q. Liu, C.S. Lim, T.C. Ayi, P.H. Yap, Determining refractive index of single living cell using an integrated microchip. Sensors and Actuators A: Physical, 133(2), (2007) 349-354.
- N.A. Elmahdy, M.F.O. Hameed, S.S.A. Obayya, B.M. Younis, Highly sensitive plasmonic-grating PCF biosensor for cancer cell detection. Optical and Quantum Electronics, 56(4), (2024) 688.
- D. Anastasopoulos, P. Moretti, T. Geernaert, B. De Pauw, U. Nawrot, G. De Roeck, F. Berghmans, E. Reynders, Identification of modal strains using sub-microstrain FBG data and a novel wavelength-shift detection algorithm. Mechanical Systems and Signal Processing, 86, (2017) 58-74.
- M. Elsherif, A.E. Salih, M.G. Munoz, F. Alam, B. AlQattan, D.S. Antonysamy, M.F. Zaki, A.K. Yetisen, S. Park, T.D. Wilkinson, H. Butt, Optical fiber sensors: Working principle, applications, and limitations. Advanced Photonics Research, 3(11), (2022) 2100371.
Articles
