Abstract

The stable and efficient supercapacitor investigation synthesized tungsten-based oxides using many approaches. The impact of the tungsten precursor on the product was significant in this research, and the most important consequences are highlighted. Supercapacitors and other energy storage devices have been using tungstate metal oxide because of its high electrical conductivity as well as low manufacturing costs. This article is mostly about how tungsten oxide-based electrodes for supercapacitors (SCs) and batteries have changed in recent years. Electrodes for energy storage devices made of nanostructured materials can benefit from a variety of features, including high surface-to-volume ratios, excellent charge transport capabilities, as well as excellent physical-chemical properties. Nanostructures and nanocomposites for supercapacitors and storage applications will be summarized in this paper.

Keywords

WO3, Supercapacitor, Nanocomposite, Nanostructure, Electrochemical energy storage,

Downloads

Download data is not yet available.

References

  1. Hamed-Najafi Ashtiania, AliBahari, Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3, Optical Materials, 58 (2016) 210-218.
  2. Yu Yao, Dandan Sang, Liangrui Zou, Qinglin Wang, and Cailong Liu, A Review on the Properties and Applications of WO3 Nanostructure-Based Optical and Electronic Devices, Nanomaterials (Basel), 11 (2021) 2136.
  3. Johann Desilvestro and Otto Haas, Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review, Journal of The Electrochemical Society, 137 (1990) 5C-22C.
  4. Khizar Mushtaq, Pui May Chou, and Chin Wei Lai, Review on the Synthesis Methods of Nano Tungsten Oxide Dihydrate Colloid, MATEC Web of Conferences, 335 (2021) 03008.
  5. F. N. I. Sari and J. M. Ting, one step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor, Applied Surface Science, 355 (2015) 419–428.
  6. C. W. Chu, F. N. I. Sari, J. C. R. Ke, J. M. Ting, A novel ternary nanocomposite for improving the cycle life and capacitance of polypyrrole, Applied Surface Science, 462, (2018) 526–539.
  7. L. Liu, Z. Niu, Jun Chen, Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations, Chemical Society Reviews, 45, (2016) 4340–4363.
  8. A. Allagui, A. S. Elwakil, M. E. Fouda, A. G. Radwan, Capacitive behavior and stored energy in supercapacitors at power line frequencies, Journal of Power Sources, 390 (2018) 142–147.
  9. R. Wang, X. Yan, J. Lang, Z. Zheng, P. Zhang, A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials, Journal of Materials Chemistry A, 2 (2014) 12724-12732.
  10. F. N. I. Sari and J. M. Ting, Quantum capacitance of CuS:Ce3+ quantum dots as high-performing supercapacitor electrodes, Scientific Reports, 7 (2017) 5999–6012.
  11. L. Dong, C. Xu, Y. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, X. Zhao, Flexible electrodes and supercapacitors for wearable energy storage: a review by category, Journal of Materials Chemistry A, 4 (2016) 4659–4685.
  12. J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X. Tao, C. Zhi, H. Hu, A high performance fiber-shaped PEDOT@ MnO2//C@ Fe3O4 asymmetric supercapacitor for wearable electronics, Journal of Materials Chemistry A, 4 (2016) 14877–14883.
  13. F. Cora, M. G. Stachiotti, C. R. A. Catlow, C. O. Rodriguez, Transition Metal Oxide Chemistry: Electronic Structure Study of WO3, ReO3, and NaWO3, The Journal of Physical Chemistry, 101 (1997) 3945−3952.
  14. T. Vogt, P. M. Woodward, P. A. Hunter, The High-Temperature Phases of WO3, Journal of Solid-State Chemistry, 144 (1999) 209−215.
  15. E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, J. Purans, Low-Temperature Polymorphism in Tungsten Trioxide Powders and Its Dependence on Mechanical Treatments, Journal of Solid-State Chemistry, 143 (1999) 24−32.
  16. P. Wang, H. Liu, Q. Tan, J. Yang, Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor, RSC Advances, 4 (2014) 42839–42845.
  17. A. F. Wells. Structural Inorganic Chemistry. 5th ed. New York: Oxford University Press (1984).
  18. B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, Journal of Solid-State Chemistry, 29 (1979) 429−434. [DOI]
  19. K. Huang and Q. Zhang, Rechargeable lithium battery based on a single hexagonal tungsten trioxide nanowire, Nano Energy, 1 (2012) 172−175.
  20. Pragati Shinde A, Seong Chan Jun, Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage, Zeitschrift für anorganische und allgemeine Chemie, 13 (2020)11-38.
  21. A. A. Mohammad and M. Gillet, Phase transformations in WO3 thin films during annealing, Thin Solid Films, 408 (2002) 302–309.
  22. M. M. Dobson and R. J. D. Tilley, A New Pseudo-Binary Tungsten Oxide, W17O47, Acta Crystallographica Section B: Structural Science, 44 (1988) 474–480.
  23. G. Ma, Z. Chen, Z. Chen, M. Jin, Q. Meng, M. Yuan, X. Wang, J. M. Liu, G. Zhou, Constructing novel WO3/Fe (III) nanofibers photocatalysts with enhanced visible-light-driven photocatalytic activity via interfacial charge transfer effect, Materials Today Energy, 3 (2017) 45−52.
  24. X. Zhou, X. Zheng, B. Yan, T. Xu, Q. Xu, Defect engineering of two-dimensional WO3 nanosheets for enhanced electrochromism and photoeletrochemical performance, Applied Surface Science, 400 (2017) 57−63.
  25. Z. X. Cai, H. Y. Li, J. C. Ding, X. Guo, Hierarchical flowerlike WO3 nanostructures assembled by porous nanoflakes for enhanced NO gas sensing, Sensors & Actuators, B, 246 (2017) 225−234.
  26. W. Sun, M. T. Yeung, A. T. Lech, C.-W. Lin, C. Lee, T. Li, X. Duan, J. Zhou, R. B. Kaner, High Surface Area Tunnels in Hexagonal WO3, Nano Letters, 15 (2015) 4834–4838.
  27. P. A. Shinde, A. C. Lokhande, N. R. Chodankar, A. M. Patil, J. H. Kim, C. D. Lokhande, Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application, Electrochimica Acta, 224 (2017) 397–404.
  28. X. Wu and S. Yao, Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices, Nano Energy, 42 (2017) 143−150.
  29. S. Yao, X. Zheng, X. Zhang, H. Xiao, F. Qu, X. Wu, Facile synthesis of flexible WO3 nanofibers as supercapacitor electrodes, Materials Letters, 186 (2017) 94–97.
  30. Y. Huang, Y. Li, G. Zhang, W. Liu, D. Li, R. Chen, F. Zheng, H. Ni, Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors, Journal of Alloys and Compounds, 778 (2019) 603–611.
  31. Z. Shao, X. Fan, X. Liu, Z. Yang, L. Wang, Z. Chen, W. Zhang, Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors, Journal of Alloys and Compounds, 765 (2018) 489–496.
  32. F. Zheng, C. Xi, J. Xu, Y. Yu, W. Yang, P. Hu, Y. Li, Q. Zhen, S. Bashir, J. L. Liu, J. Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor, Journal of Alloys and Compounds, 772 (2019) 933–942.
  33. P. A. Shinde, A. C. Lokhande, A. M. Patil, C. D. Lokhande, Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor, Journal of Alloys and Compounds, 770 (2019) 1130–1137.
  34. A. V. Salkar, A. P. Naik, V. S. Joshi, S. K. Haram, P, P. Morajkar, Designing a 3D nanoporous network via self-assembly of WO3 nanorods for improved electrocapacitive performance, Cryst Eng Comm., 20 (2018) 6683–6694.
  35. J. Jia, X. Liu, R. Mi, N. Liu, Z. Xiong, L. Yuan, C. Wang, G. Sheng, L. Cao, X. Zhou, X. Liu, Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors, Journal of Materials Chemistry A, 6 (2018) 15330–15339.
  36. J. Chen, H. Wang, J. Deng, C. Xu, Y. Wang, Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor, Journal of Materials Chemistry A, 6 (2018) 8986–8991.
  37. M. Sasidharana, N. Gunawardhana, M. Yoshiob, K. Nakashima, WO3 hollow nanospheres for high-lithium storage capacity and good cyclability, Nano Energy, 1 (2012) 503–508.
  38. P. Li, X. Li, Z. Zhao, M. Wang, T. Fox, Q. Zhang, Y. Zhou, Correlations among structure, composition and electrochemical performances of WO3 anode materials for lithium ion batteries, Electrochimica Acta, 192 (2016) 148–157.
  39. H. Tong, Y. Xu, X. Cheng, X. Zhang, S. Gao, H. Zhao, L. Huo, One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance, Electrochimica Acta, 210 (2016) 147–154.
  40. Z. Gu, H. Li, T. Zhai, W. Yang, Y. Xia, Y. Ma, J. Yao, Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals, Journal of Solid-State Chemistry, 180 (2007) 98–105.