Submit your Manuscript to the following email address nanonext@journals.asianresassoc.org

Gold nanoparticle–Quercetin composite formulation: A Computational Model Structure

Rajat Pal
Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata–700156, West Bengal, India
Soumalya Chatterjee
Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata–700156, West Bengal, India
Debraj Hazra
Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata–700156, West Bengal, India

Dimensions

Plum Analytics

Abstract

Nanoparticle mediated drug delivery is an emerging area of research now a days. In our present study, we emphasized on the mode of interaction of a widely used drug, Quercetin with frequently worked metallic nanoparticle, Gold (Au). At first five –OH groups have been attached separately with gold atom and energy minimization was performed using Avogadro Software for windows system. From this, we found that the –OH groups present at 7 position of ‘A’ ring, 3’ and 4’ positions of ‘B’ ring are most suitable site for gold atom to bind. In the next level of study, a gold atom has been interacted with two quercetin molecules at a time. The gold atom was attached to –OH group of 7 position of one quercetin molecule and 4’ position of the other. The calculated energy was found to be 482.319 KJ/Mol. Further, gold atoms were interacted with all –OH groups of quercetin molecule at a time to see its stability and the structure was found to have quite stable with an energy level of 218.074 KJ/Mol. Lastly we tried to make a quercetin–gold nanoparticle model structure which mimics the actual nanocomposite synthesized in vitro where one gold atom was interacted with two quercetin molecules and the other –OH groups of quercetin molecules were again attached with gold atoms. This structure possesses energy of 439.880 KJ/Mol. The bond lengths and bond angle of interacting C, O and Au atoms were measured to characterize the complex.

Keywords

  • Quercetin,
  • Avogadro software,
  • Silver nanoparticles,
  • Nanocomposite structures

References

  1. Twi-global, (2021) Technical knowledge of Nanoparticle, https://www.twi-global.com/technical-knowledge/faqs/what-are-nanoparticles.
  2. B. Duncan, C. Kim, V. M. Rotello, Gold nanoparticle platforms as drug and biomacromolecule delivery systems, Journal of Controlled Release, 148 (2010) 122–127.
  3. C. A. D. Santos, M. M. Seckler, A. P. Ingle, I. Gupta, S. Galdiero, M. Galdiero, A. Gade, M. Rai, Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues, Journal of Pharmaceutical Sciences, 103 (2014) 1931–1944.
  4. T. Kruk, K. Szczepanowicz, J. Stefanska, R. P. Socha, P. Warszynski, Synthesis and antimicrobial activity of monodisperse copper nanoparticles, Colloids and Surfaces B: Bio interfaces, 128 (2015) 17 – 22.
  5. S. A. Mahdy, Q. J. Raheed, P. T. Kalaichelvan, Antimicrobial Activity of zero-valent Iron Nanoparticles, International Journal of Modern Engineering Research, 2 (2012) 578–581.
  6. S. Rojas, F. J. Carmona, C. R. Maldonado, P. Horcajada, T. Hidalgo, C. Serre, J. A. R. Navarro, E. Barea, Nanoscaled Zinc Pyrazolate Metal–Organic Frameworks as Drug-Delivery Systems, Inorganic Chemistry, 55 (2016) 2650–2663.
  7. D. Guo, C. Wu, J. Li, A. Guo, Q. Li, H. Jiang, B. Chen, X. Wang, Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation, Nanoscale Research Letters, 4 (2009) 1395–1402.
  8. J. Kim, T. Shirasawa, Y. Miyamoto, The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model, Biomaterials, 31 (2010) 5849–5854.
  9. C. P. Adams, K. A. Walker, S. O. Obare, K. M. Docherty, Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles, PlosOne, 9 (2014) e85981.
  10. L. Xu, D. Liu, D. Chen, H. Liu, J. Yang, Size and shape controlled synthesis of rhodium nanoparticles, Heliyon, 5 (2019) e01165.
  11. G. Viau, R. Brayner, L. Poul, N. Chakroune, E. Lacaze, F. F. Vincent, F. Fievet, Ruthenium Nanoparticles: Size, Shape, and Self Assemblies, Chemistry of Materials, 15 (2003) 486 – 494.
  12. L. Qi, H. Colfen, M. Antonietti, Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers, Nano Letters, 1 (2001) 61–65.
  13. W. Yin, W. Chai, K. Wang, W. Ye, Y. Rui, B. Tang, Facile synthesis of Sb nanoparticles anchored on reduced graphene oxides as excellent anode materials for lithium-ion batteries, Journal of Alloys and Compounds, 797 (2019) 1249–1257
  14. G. Schmid, Large clusters and colloids. Metals in the embryonic state, Chemical Review, 92 (1992) 1709 – 1727.
  15. M.C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties and Applications toward Biology, Catalysis and Nanotechnology, Chemical Review, 104 (2004) 293 – 346.
  16. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science, 281 (1998) 2013 – 2016.
  17. W.C.W. Chan, S.M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 281 (1998) 2016 -2018.
  18. S. Wang, N. Mamedova, N.A. Kotov, W. Chen, J. Studer, Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates, Nano Letters, 2 (2002) 817 – 822.
  19. C. Mah, I. Zolotukhin, T.J. Fraites, J. Dobson, C. Batich, B.J. Byrne, Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo, Molecular Therapy, 1, (2000) S239.
  20. D. Panatarotto, C.D. Prtidos, J. Hoebeke, F. Brown, E. Kramer, J.P. Briand, S. Muller, M. Prato, A. Bianco, Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses, Chemistry and Biology, 10 (2003) 961 – 966.
  21. R.L. Edelstein, C.R. Tamanaha, P.E. Sheehan, M.M. Miller, D.R. Baselt, L.J. Whitman, R.J. Colton, The BARC biosensor applied to the detection of biological warfare agents, Biosensors and Bioelectronics, 14 (2000) 805 - 813.
  22. J.M. Nam, C.C. Thaxton, C.A. Mirkin, Nanoparticles-based bio-bar codes for the ultrasensitive detection of proteins, Science, 301 (2003) 1884 - 1886.
  23. R. Mahtab, J.P. Rogers, C.J. Murphy, Protein sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides, Journal of the Americal Chemical Society, 117 (1995) 9099 - 9100.
  24. J. Ma, H. Wong, L.B. Kong, K.W. Peng, Biomimetic processing of nanocrystallite bioactive apatite coating on titanium, Nanotechnology, 14 (2003) 619 - 623.
  25. A. Isla, W. Brostow, B. Bujard, M. Estevez, J.R. Rodriguez, S. Vargas, V.M. Castano, Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology, Materials Research Innovations, 7 (2003) 110-114.
  26. R. Weissleder, G. Elizondo, J. Wittenburg, C.A. Rabito, H.H. Bengele, L. Josephson, Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging, Radiology, 175 (1990) 489 – 493.
  27. W.J. Parak, R. Boudreau, M.L. Gros, D. Gerion, D. Zanchet, C.M. Micheel, S.C. Williams, A.P. Alivisatos, C.A. Larabell, Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks, Advanced Materials, 14 (2002) 882 - 885.
  28. S. Riaz, N. F. Rana, I. Hussain, T. Tanweer, A. Nawaz, F. Menaa, H. A. Janjua, T. Alam, A. Batool, A. Naeem, M. Hameed, S. M. Ali, Effect of Flavonoid-Coated Gold Nanoparticles on Bacterial Colonization in Mice Organs, Nanomaterials, 10 (2020), 1769.
  29. A. M. E. Shafey, Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review, Green Processing and Synthesis, 9 (2020) 304 – 339.
  30. M. Lesjak, I. Beara, N. Simin, D. Pintac, T. Majkic, K. Bekvalac, D. Orcic, N. Mimica Dukic, Antioxidant and anti-inflammatory activities of quercetin and its derivatives, Journal of Functional Foods, 40 (2018) 68 – 75.
  31. W. Y. Oh, P. Ambigaipalan, F. Shahidi, Preparation of quercetin esters and their antioxidant activity, Journal of Agricultural and Food Chemistry, 67 (2019) 10653–10659.
  32. L. Gibellini, M. Pinti, M. Nasi, J.P. Montagna, S. De Biasi, E. Roat, L. Bertoncelli, E.L. Cooper, A. Cossarizza, Quercetin and cancer chemoprevention, Evidence-Based Complementary and Alternative Medicine, 2011 (2011) 591356.
  33. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, 4 (2012) 17.
  34. S. Chatterjee, D. Hazra, R. Pal, In search of metal for construction of metal – Ferulic acid nanocomposite structure by in silico method, International Journal of Current Research, 13(5) (2021) 17585 – 17589.
  35. M. Yilmaz, A. A. Karanastasis, M.V. Chatziathanasiadou, M. Oguz, A. Kougioumtzi, N Clemente, T. F. Kellici, N.E. Zafeiropoulos, A. Avgeropoulos, T. Mavromoustakos, U. Dianzani, S. Karakurt, A.G. Tzakos, Inclusion of Quercetin in Gold Nanoparticles Decorated with Supramolecular Hosts Amplifies Its Tumor Targeting Properties, ACS Applied Bio Materials, (2019) 2715–2725.
  36. S. Balakrishnan, F. A. Bhat, P.R. Singh, S. Mukherjee, P. Elumalai, S. Das, C. R. Patra, J. Arunakaran, Gold Nanoparticle–conjugated quercetin inhibits epithelial–mesenchymal transition, angiogenesis and invasiveness via EGFR/ VEGRF 2 – mediated pathway in breast cancer, Cell Proliferation, 49 (2016) 678 – 697.

Downloads

PDF

Article Details

Volume 2, Issue 3, Year 2021

Published 2021-07-09

Downloads

Download data is not yet available.

How to Cite

Pal, R., Chatterjee, S., & Hazra, D. (2021). Gold nanoparticle–Quercetin composite formulation: A Computational Model Structure. NanoNEXT, 2(3), 1–7. https://doi.org/10.34256/nnxt2131

Plum Analytics