Abstract

Zinc oxide (ZnO) is a material that is flexible with distinctive characteristics, such as high sensitivity, wide-ranging, non-toxicity, strong compatibility and strong isoelectricity point that support the consideration with a few exceptions. The advantages for energy and biological science applications depend on nanostructured morphology ZnO based material are regularly studied. These review works concentrate on the recent development in ZnO morphological depends nanomaterial, nanocomposites, and doped materials for the photocatalyst activities.

Keywords

ZnO, Photocatalyst, Nanostructure, Morphology,

Downloads

Download data is not yet available.

References

  1. Vijayaprasath G, Ravi G, Arivanandhan M, Hayakawa Y. Effect of deposition time on the chemical bath deposition method of ZnO thin films. AIP Conference Proceedings.1536(2013):527-528. https://doi.org/https://doi.org/10.1063/1.4810333
  2. Bao D, Gu H, Kuang A. Sol-gel-derived c-axis oriented ZnO thin films. Thin Solid Films. 1998 01;312(1-2):37-39. https://doi.org/10.1016/s0040-6090(97)00302-7
  3. Subramanyam T, Srinivasulu Naidu B, Uthanna S. Physical Properties of Zinc Oxide Films Prepared by dc Reactive Magnetron Sputtering at Different Sputtering Pressures. Crystal Research and Technology. 2000 Oct;35(10):1193-1202. https://doi.org/10.1002/1521-4079(200010)35:10<1193::aid-crat1193>3.0.co;2-6
  4. Eya D, Ekpunob A, Okeke C. Influenceof thermal of thermal annealing on the opticalproperties of tin oxide thin films prepared bychemical bath technique. Academic OpenInternet Journal.17(2006):1311-4360.
  5. Lehraki N, Aida M, Abed S, Attaf N, Attaf A, Poulain M. ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. Current Applied Physics. 2012 09;12(5):1283-1287. https://doi.org/10.1016/j.cap.2012.03.012
  6. Jin C, Yuan X, Ge W, Hong J, Xin X. Synthesis of ZnO nanorods by solid state reaction at room temperature. Nanotechnology. 2003 04 25;14(6):667-669. https://doi.org/10.1088/0957-4484/14/6/319
  7. Iwashita T, Ando S. Preparation and characterization of ZnS thin films by the chemical bath deposition method. Thin Solid Films. 2012 Oct;520(24):7076-7082. https://doi.org/10.1016/j.tsf.2012.07.129
  8. Osherov A, Golan Y. Chemical epitaxy of semiconductor thin films. MRS Bulletin. 2010 Oct;35(10):790-796. https://doi.org/10.1557/mrs2010.508
  9. Cavalcante P, Melo R, Castro Dantas T, Dantas Neto A, Barros Neto E, Moura M. Removal of phenol from aqueous medium using micellar solubilization followed by ionic flocculation. Journal of Environmental Chemical Engineering. 2018 04;6(2):2778-2784. https://doi.org/10.1016/j.jece.2018.04.025
  10. Hu Y, Gao X, Yu L, Wang Y, Ning J, Xu S, Lou XWD. Carbon-Coated CdS Petalous Nanostructures with Enhanced Photostability and Photocatalytic Activity. Angewandte Chemie International Edition. 2013 04 05;52(21):5636-5639. https://doi.org/10.1002/anie.201301709
  11. Devan RS, Patil RA, Lin J, Ma Y. One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications. Advanced Functional Materials. 2012 06 13;22(16):3326-3370. https://doi.org/10.1002/adfm.201201008
  12. Chen C, Fan Y, Gu J, Wu L, Passerini S, Mai L. One-dimensional nanomaterials for energy storage. Journal of Physics D: Applied Physics. 2018 02 16;51(11):113002. https://doi.org/10.1088/1361-6463/aaa98d
  13. Zhai T, Fang X, Liao M, Xu X, Zeng H, Yoshio B, Golberg D. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors. Sensors. 2009 08 20;9(8):6504-6529. https://doi.org/10.3390/s90806504
  14. Ansari SA, Ansari SG, Foaud H, Cho MH. Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance. New Journal of Chemistry. 2017;41(17):9314-9320. https://doi.org/10.1039/c6nj04070e
  15. Vidyasagar C, Naik YA, Venkatesh T, Viswanatha R. Solid-state synthesis and effect of temperature on optical properties of Cu–ZnO, Cu–CdO and CuO nanoparticles. Powder Technology. 2011 Dec;214(3):337-343. https://doi.org/10.1016/j.powtec.2011.08.025
  16. Meléndrez MF, Hanks K, Leonard-Deepak F, Solis-Pomar F, Martinez-Guerra E, Pérez-Tijerina E, José-Yacaman M. Growth of aligned ZnO nanorods on transparent electrodes by hybrid methods. Journal of Materials Science. 2011 Oct 21;47(4):2025-2032. https://doi.org/10.1007/s10853-011-6002-x
  17. Rajappan-Achary S, Agouram S, Reig C, Sánchez-Royo JF, Martínez-Tomás MC, Muñoz-Sanjosé V. Self-Assembled Zinc Oxide Quantum Dots Using Spray Pyrolysis Methodology. Crystal Growth & Design. 2011 09 07;11(9):3790-3801. https://doi.org/10.1021/cg2003113
  18. Zhu L, Hong M, Wei Ho G. Hierarchical Assembly of SnO2/ZnO Nanostructures for Enhanced Photocatalytic Performance. Scientific Reports. 2015 06 25;5(1). https://doi.org/10.1038/srep11609
  19. Khanaki A, Abdizadeh H, Golobostanfard MR. Electrophoretic Deposition of CuIn1–xGaxSe2 Thin Films Using Solvothermal Synthesized Nanoparticles for Solar Cell Application. The Journal of Physical Chemistry C. 2015 09 23;119(40):23250-23258. https://doi.org/10.1021/acs.jpcc.5b07300
  20. Ates ES, Kucukyildiz S, Unalan HE. Zinc Oxide Nanowire Photodetectors with Single-Walled Carbon Nanotube Thin-Film Electrodes. ACS Applied Materials & Interfaces. 2012 09 18;4(10):5142-5146. https://doi.org/10.1021/am301402y
  21. Taheri M, Abdizadeh H, Golobostanfard MR. Hierarchical ZnO nanoflowers and urchin-like shapes synthesized via sol-gel electrophoretic deposition with enhanced photocatalytic performance. Materials Chemistry and Physics. 2018 Dec;220:118-127. https://doi.org/10.1016/j.matchemphys.2018.08.043
  22. Mimouni R, Souissi A, Madouri A, Boubaker K, Amlouk M. High photocatalytic efficiency and stability of chromium-indium codoped ZnO thin films under sunlight irradiation for water purification development purposes. Current Applied Physics. 2017 08;17(8):1058-1065. https://doi.org/10.1016/j.cap.2017.03.025
  23. Wanotayan T, Panpranot J, Qin J, Boonyongmaneerat Y. Microstructures and photocatalytic properties of ZnO films fabricated by Zn electrodeposition and heat treatment. Materials Science in Semiconductor Processing. 2018 02;74:232-237. https://doi.org/10.1016/j.mssp.2017.10.025
  24. Sahu K, kuriakose S, Singh J, Satpati B, Mohapatra S. Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes. Journal of Physics and Chemistry of Solids. 2018 Oct;121:186-195. https://doi.org/10.1016/j.jpcs.2018.04.023
  25. Pathak TK, Kroon R, Swart H. Photocatalytic and biological applications of Ag and Au doped ZnO nanomaterial synthesized by combustion. Vacuum. 2018 Nov;157:508-513. https://doi.org/10.1016/j.vacuum.2018.09.020
  26. Meshram SP, Adhyapak PV, Pardeshi SK, Mulla IS, Amalnerkar DP. Sonochemically generated cerium doped ZnO nanorods for highly efficient photocatalytic dye degradation. Powder Technology. 2017 08;318:120-127. https://doi.org/10.1016/j.powtec.2017.05.044
  27. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chemical Society Reviews. 2015;44(1):362-381. https://doi.org/10.1039/c4cs00269e
  28. Mullapudi GSR, Velazquez-Nevarez GA, Avila-Avendano C, Torres-Ochoa JA, Quevedo-López MA, Ramírez-Bon R. Low-Temperature Deposition of Inorganic–Organic HfO2–PMMA Hybrid Gate Dielectric Layers for High-Mobility ZnO Thin-Film Transistors. ACS Applied Electronic Materials. 2019 05 29;1(6):1003-1011. https://doi.org/10.1021/acsaelm.9b00175
  29. Nomoto J, Makino H, Nakajima T, Tsuchiya T, Yamamoto T. Improvement of the Properties of Direct-Current Magnetron-Sputtered Al-Doped ZnO Polycrystalline Films Containing Retained Ar Atoms Using 10-nm-Thick Buffer Layers. ACS Omega. 2019 08 27;4(11):14526-14536. https://doi.org/10.1021/acsomega.9b01761