Abstract

This review paper is dedicated to state-of-the-art in brain-machine interfaces (BMIs) based on nano-bioelectronics (NBE). The report elaborates how convergence in nanoscience, biotechnology, information technology and cognitive science (NBIC) has resulted in new set of neural interfaces that overcomes the size limitation of macro-scale neural interfaces. The paper will discuss certain properties of nanomaterials, in particular, carbon-based nanostructures, metals nano clustering structures and hybrids composite materials, that have the potential to enhance signal recording, stimulation of neurons and drug delivery. The technological revolution in the application of the technologies to the sphere of neural prosthetics, neurorehabilitation and targeted therapeutics are considered. In addition, critical appraisal of current technical and biological issues, such as foreign body reaction (FBR) and degradation of the signal, is undertaken and one that is explored here is self-healing materials, contactless energy delivery, and artificial intelligence interface. The article ends with the positive perspective to the future development of this cross disciplinary endeavour in that it would change the nature of how the brain has been known and operates in terms of neurologically.

Keywords

FBR, NBE, NBIC, Neurorehabilitation,

Downloads

Download data is not yet available.

References

  1. Y. Lin, Y. Fang, J. Yue, B. Tian, Soft–hard composites for bioelectric interfaces. Trends in chemistry, 2(6), (2020) 519-534. https://doi.org/10.1016/j.trechm.2020.03.005
  2. Y. Pan, W. Wang, Y. Shui, J.F. Murphy, Y.Y.S. Huang, Fabrication, sustainability, and key performance indicators of bioelectronics via fiber building blocks. Cell Reports Physical Science, 5(8), (2024) 101930. https://doi.org/10.1016/j.xcrp.2024.101930
  3. Y. Tanabe, (2024) Wireless Power Transfer Application for Healthcare and Treatments. In Wearable Biosensing in Medicine and Healthcare Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8122-9_18
  4. B.A. Miao, L. Meng, Tian, B. Biology-guided engineering of bioelectrical interfaces. Nanoscale Horizons, 7(2), (2022) 94-111. https://doi.org/10.1039/D1NH00538C
  5. G.A. Woods, N.J. Rommelfanger, G. Hong, Bioinspired materials for in vivo bioelectronic neural interfaces. Matter, 3(4), (2020) 1087-1113. https://doi.org/10.1016/j.matt.2020.08.002
  6. Y. Fang, L. Meng, A. Prominski, E.N. Schaumann, M. Seebald, B. Tian, Recent advances in bioelectronics chemistry. Chemical Society Reviews, 49(22), (2020) 7978-8035. https://doi.org/10.1039/D0CS00333F
  7. F. Wu, P. Yu, L. Mao, New opportunities of electrochemistry for monitoring, modulating, and mimicking the brain signals. JACS Au, 3(8), (2023) 2062-2072. https://doi.org/10.1021/jacsau.3c00220
  8. A. Abend, C. Steele, S. Schmidt, R. Frank, H.G. Jahnke, M. Zink, Proliferation and Cluster Analysis of Neurons and Glial Cell Organization on Nanocolumnar TiN Substrates. International Journal of Molecular Sciences, 21(17), (2020) 6249. https://doi.org/10.3390/ijms21176249
  9. C.P. Tseng, J.J.Silberg, G.N.Bennett, R. Verduzco, 100th anniversary of macromolecular science viewpoint: soft materials for microbial bioelectronics. ACS Macro Letters, 9(11), (2020) 1590-1603. https://doi.org/10.1021/acsmacrolett.0c00573
  10. A. Serb, A. Corna, R. George, A. Khiat, F. Rocchi, M. Reato, M. Maschietto, C. Mayr, G. Indiveri, S. Vassanelli, T. Prodromakis, Memristive synapses connect brain and silicon spiking neurons. Scientific reports, 10(1), (2020) 2590. https://doi.org/10.1038/s41598-020-66548-y
  11. E.G.R. Fernandes, H.A.M. Faria, N.C.S. Vieira, (2022). Field-effect transistors for biomedical applications. In Advances in Bioelectrochemistry Biosensors, Wearable Devices and Biomedical Applications, Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-97921-8_1
  12. M. Buaki-Sogó, L. García-Carmona, M. Gil-Agustí, L. Zubizarreta, M. García-Pellicer, A. Quijano-López, Enzymatic glucose-based bio-batteries: bioenergy to fuel next-generation devices. Topics in Current Chemistry, 378(6), (2020) 49. https://doi.org/10.1007/s41061-020-00312-8
  13. Y. Zhu, Y. Yang, G. Ni, S. Li, W. Liu, Z. Gao, X. Zhang, Q. Zhang, C. Wang, J. Zhou, On-demand electrically controlled melatonin release from PEDOT/SNP composite improves quality of chronic neural recording. Frontiers in Bioengineering and Biotechnology, 11, (2023) 1284927. https://doi.org/10.3389/fbioe.2023.1284927
  14. N. El-Atab, S.F. Shaikh, M.M. Hussain, Nano-scale transistors for interfacing with brain: design criteria, progress and prospect. Nanotechnology, 30(44), (2019) 442001. https://doi.org/10.1088/1361-6528/ab3534
  15. X. Dai, G. Hong, T. Gao, C.M. Lieber, Mesh nanoelectronics: seamless integration of electronics with tissues. Accounts of chemical research, 51(2), (2018) 309-318. https://doi.org/10.1021/acs.accounts.7b00547
  16. S. Dolev, R. Narayanan, Towards radio transceiving in-vivo nano-robots. SN Applied Sciences, 1(9), (2019) 969. https://doi.org/10.1007/s42452-019-1001-7
  17. T. Garry, T. Harwood, Cyborgs as frontline service employees: a research agenda. Journal of Service Theory and Practice, 29(4), (2019) 415-437. https://doi.org/10.1108/JSTP-11-2018-0241
  18. P. Li, S. Kim, B. Tian, Beyond 25 years of biomedical innovation in nano-bioelectronics. Device, 2(7), (2024). https://doi.org/10.1016/j.device.2024.100401
  19. Y. Seo, S. Jeong, J. Lee, H.S. Choi, J. Kim, H. Lee, Innovations in biomedical nanoengineering: nanowell array biosensor. Nano Convergence, 5(1), (2018) 9. https://doi.org/10.1186/s40580-018-0141-6
  20. C. Hurot, N. Scaramozzino, A. Buhot, Y. Hou, Bio-inspired strategies for improving the selectivity and sensitivity of artificial noses: A review. Sensors, 20(6), (2020) 1803. https://doi.org/10.3390/s20061803
  21. A. Barragán-Ocaña, P. Silva-Borjas, M. de los Ángeles Olvera-Treviño, (2022). Identification of the Scientific and Technological Trajectory in the Area of Bioelectronics: A Patent and Networks Analysis. In Bioelectronics, CRC Press. https://doi.org/10.1201/9781003263265-7
  22. R. Munusami, M. Ramasamy, (2022). Multiplexed biosensors for efficient diagnosis of the clinical conditions toward Health management. In Miniaturized biosensing devices: fabrication and applications, Springer Nature, Singapore. https://doi.org/10.1007/978-981-16-9897-2_9
  23. G. Thriveni, K. Ghosh, Advancement and challenges of biosensing using field effect transistors. Biosensors, 12(8), (2022) 647. https://doi.org/10.3390/bios12080647
  24. I. Prattis, E. Hui, P. Gubeljak, G.S.K. Schierle, A. Lombardo, L.G. Occhipinti, Graphene for biosensing applications in point-of-care testing. Trends in Biotechnology, 39(10), (2021) 1065-1077. https://doi.org/10.1016/j.tibtech.2021.01.005
  25. N.F.N. Azam, S.A. Lim, (2020). and Applications. Nanobiomaterial Engineering: Concepts and Their Applications in Biomedicine and Diagnostics, 71.
  26. N.F.N. Azam, S.A. Lim, M.U. Ahmed, Carbon nanomaterials for electrochemiluminescence-based immunosensors: recent advances and applications. Nanobiomaterial Engineering: Concepts and Their Applications in Biomedicine and Diagnostics, (2020) 71-90. https://doi.org/10.1007/978-981-32-9840-8_4
  27. J. Chung, Y. Jung, S. Hur, J.H. Kim, S.J. Kim, W.D. Kim, S.J. Kim, W. Doo Kim, Y.H. Choung, S.H. Oh, Development and characterization of a biomimetic totally implantable artificial basilar membrane system. Frontiers in Bioengineering and Biotechnology, 9, (2021) 693849. https://doi.org/10.3389/fbioe.2021.693849
  28. B.K. Sarker, C.M. Hampton, L.F. Drummy, Graphene Field‐Effect Transistors for Sensing Stress and Fatigue Biomarkers. Graphene Field‐Effect Transistors: Advanced Bioelectronic Devices for Sensing Applications, (2023) 339-372. https://doi.org/10.1002/9783527843374.ch17
  29. R.V. Martinez, (2023). Wearables, e-textiles, and soft robotics for personalized medicine. In Springer Handbook of Automation, Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-96729-1_59
  30. X. Duan, C.M. Lieber, Nanoscience and the nano-bioelectronics frontier. Nano Research, 8(1), (2015) 1-22. https://doi.org/10.1007/s12274-014-0692-8
  31. D. Rani, V. Pachauri, S. Ingebrandt, (2018) Silicon nanowire field-effect biosensors. In Label-Free Biosensing: Advanced Materials, Devices and Applications, Cham: Springer International Publishing. https://doi.org/10.1007/5346_2017_19
  32. C.G. Siontorou, K.V. T.eramidas, G.P.D. Nikoleli, D.P. Nikolelis, S. Karapetis, S. Bratakou, N. Tzamtzis, (2017). Nano-enabled medical devices based on biosensing principles: technology basis and new concepts. AIMS Materials Science, 4(1), (2017) 250-266. https://doi.org/10.3934/matersci.2017.1.250
  33. S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, H. Liu, Z. Li, J. Wang, Y. Zhou, (2017). Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nature communications, 8(1), 14902. https://doi.org/10.1038/ncomms14902
  34. C. Yang, Z. Suo, Hydrogel ionotronics. Nature Reviews Materials, 3(6), (2018) 125-142. https://doi.org/10.1038/s41578-018-0018-7
  35. C.G. Siontorou, G.P.D. Nikoleli, D.P. Nikolelis, S. Karapetis, N. Tzamtzis, S. Bratakou, Point-of-care and implantable biosensors in cancer research and diagnosis. Next generation point-of-care biomedical sensors technologies for cancer diagnosis, (2017) 115-132. https://doi.org/10.1007/978-981-10-4726-8_5
  36. M. Donnelly, D. Mao, J. Park, G. Xu, Graphene field-effect transistors: the road to bioelectronics. Journal of Physics D: Applied Physics, 51(49), (2018) 493001. https://doi.org/10.1088/1361-6463/aadcca
  37. A.F. McGuire, F. Santoro, B. Cui, (2018) Interfacing cells with vertical nanoscale devices: applications and characterization. Annual Review of Analytical Chemistry, 11(1), 101-126. https://doi.org/10.1146/annurev-anchem-061417-125705