Abstract

Supercapacitor high-power density, rapid charge/discharge rates, long lifespan, and environmental friendliness have positioned them as extremely promising energy storage options. This study examines the physical and chemical characteristics of several biomass materials and their impact on supercapacitor performance. Additionally, we delve into the classification and fundamental concepts of supercapacitors. Biomass-derived carbon compounds exhibit abundant surface features and naturally occurring hierarchical structures that enhance electrochemical reactions, including diffusion and ion transfer. Historically, biomass has been the primary raw material for synthesizing innovative porous carbon compounds, representing a significant advancement in electrode materials for supercapacitors. Our study emphasizes the potential applications of one-, two-, and three-dimensional carbon compounds derived from biomass as electrode materials for supercapacitors by reviewing the latest research in this field. Additionally, we discuss the challenges faced today and the opportunities for enhancing the efficiency of carbon-based supercapacitor electrodes in the future.

Keywords

Biomass, Supercapacitor, Nanoparticles, Biodegradable Materials,

Downloads

Download data is not yet available.

References

  1. L. Que, L. Zhang, C. Wu, Y. Zhang, C. Pei, F. Nie, Pt-decorated graphene network materials for supercapacitors with enhanced power density, Carbon, 145, (2019) 281-289. https://doi.org/10.1016/j.carbon.2019.01.048
  2. Y. Zhu, C. Huang, C Li, M. Fan, K Shu, HC Chen, Strong synergetic electrochemistry between transition metals of α phase Ni −Co−Mn hydroxide contributed superior performance for hybrid supercapacitors, Journal of Power Sources, 412, (2019) 559-567. https://doi.org/10.1016/j.jpowsour.2018.11.080
  3. Y. Deng, Y. Ji, H. H. Wu, F. Chen, enhanced electrochemical performance and high voltage window for supercapacitor based on multi-heteroatom modified porous carbon materials, Chemical Communications, 55, (2019) 1486-1489. https://doi.org/10.1039/C8CC08391F
  4. S.K. Singh, H. Prakash, M.J. Akhtar, K.K. Kar, Lightweight and high-performance microwave absorbing heteroatom-doped carbon derived from chicken feather fibers, ACS Sustainable Chemistry & Engineering, 6(4), (2018) 5381-5393. https://doi.org/10.1021/acssuschemeng.8b00183
  5. S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotubecoated carbon fiber: ultra-lightweight, thin, and highly efficient microwave absorber, ACS Applied Materials & Interfaces, 10(29), (2018) 24816-24828. https://doi.org/10.1021/acsami.8b06673
  6. Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, A. Ahmad, L. Xie, C.M. Chen, Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review, Journal of materials chemistry a, 7, (2019) 16028-16045. https://doi.org/10.1039/C9TA04436A
  7. T. Xu, H. Du, H. Liu, W. Liu, X. Zhang, C. Si, P. Liu, K. Zhang, Advanced nanocellulose‐based composites for flexible functional energy storage devices, Advanced materials, 33, (2021) 2101368. https://doi.org/10.1002/adma.202101368
  8. C.L. Si, J.K. Kim, Y.S. Bae, S.M. Li, Phenolic compounds in the leaves of Populus ussuriensis and their antioxidant activities. Planta medica, 75(10), (2009) 1165-1167. https://doi.org/10.1055/s-0029-1185476
  9. M. Klein, E. Poverenov, Natural biopolymer‐based hydrogels for use in food and agriculture. Journal of the Science of Food and Agriculture, 100(6), (2020) 2337-2347. https://doi.org/10.1002/jsfa.10274
  10. X. Zhu, G. Jiang, G. Wang, Y. Zhu, W. Cheng, S. Zeng, J. Zhou, G.Xu, D. Zhao, Cellulose-based functional gels and applications in flexible supercapacitors, Resources Chemicals and Materials, 2(2), (2023) 177. https://doi.org/10.1016/j.recm.2023.03.004
  11. M. Zhang, H. Du, K. Liu, S. Nie, T. Xu, X. Zhang, C. Si, Adv. Compos. Fabrication and applications of cellulose-based nanogenerators, Advanced Composites and Hybrid Materials, 4, (2021), 865-884. https://doi.org/10.1007/s42114-021-00312-2
  12. Y. Wang, K. Liu, M. Zhang, T. Xu, H. Du, B. Pang, C. Si, Sustainable polysaccharide-based materials for intelligent packaging. Carbohydrate Polymers, 313, (2023) 120851. https://doi.org/10.1016/j.carbpol.2023.120851
  13. T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang, M. Zhang, C. Si, Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor, Advanced Composites and Hybrid Materials, 6(3) (2023), 108. https://doi.org/10.1007/s42114-023-00675-8
  14. E.S. Appiah, P. Dzikunu, N. Mahadeen, D. N. Ampong, K. Mensah-Darkwa, A. Kumar, R. K. Gupta, M. Adom-Asamoah, Biopolymers-derived materials for supercapacitors: recent trends, challenges, and future prospects, Molecules, 27(19), (2022) 6556. https://doi.org/10.3390/molecules27196556
  15. Yang W, Wang Z, Zhang W, Guo S. Electronic-structure tuning of water-splitting nanocatalysts, Trends in Chemistry, 1(1), (2019) 259-271. https://doi.org/10.1016/j.trechm.2019.03.006
  16. R.A. Aziz, I.I. Misnon, K.F. Chong, M.M. Yusoff, R. Jose, Layered sodium titanate nanostructures as a new electrode for high energy density supercapacitors, Electrochim. Acta, 113, (2013) 141-148. https://doi.org/10.1016/j.electacta.2013.09.128
  17. M. Harilal, B. Vidyadharan, I.I. Misnon, G.M. Anilkumar, A. Lowe, J. Ismail, M. M. Yusoff, R. Jose, One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors, ACS applied materials & interfaces, 9(12), (2017) 10730-10742. https://doi.org/10.1021/acsami.7b00676
  18. S.G. Krishnan, A. Arulraj, M. Khalid, M.V. Reddy, R. Jose, Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide, Renew, Renewable and Sustainable Energy Reviews, 141, (2021) 110798. https://doi.org/10.1016/j.rser.2021.110798
  19. P. Chand, A. Joshi, V. Singh, High performance of facile microwave-assisted BiPO4 nanostructures as electrode material for energy storage applications, Materials Science in Semiconductor Processing, 122, (2021) 105472. https://doi.org/10.1016/j.mssp.2020.105472
  20. A. Joshi, P. Chand, Electrochemical properties of Bi0. 85Mg0.15PO4 nanostructures for supercapacitor applications, In AIP Conference Proceedings, AIP Publishing, (2020) 020174. https://doi.org/10.1063/5.0001155
  21. B.L. Vijayan, S.G. Krishnan, N.K.M. Zain, M. Harilal, A. Yar, I.I. Misnon, J. O. Dennis, M.M. Yusoff, R. Jose, Large scale synthesis of binary composite nanowires in the Mn2O3-SnO2 system with improved charge storage capabilities, Chemical Engineering Journal, 327, (2017) 962-972, https://doi.org/10.1016/j.cej.2017.06.171
  22. C.L. Si, J.K. Kim, Y.S. Bae, S.-M. Li, Phenolic compounds in the leaves of Populus ussuriensis and their antioxidant activities, Planta medica, 75(10), (2009) 1165-1167. https://doi.org/10.1055/s-0029-1185476
  23. R. Vinodh, Y. Sasikumar, H.J. Kim, R. Atchudan, M. Yi, Chitin and chitosan-based biopolymer derived electrode materials for supercapacitor applications: A critical review, Journal of Industrial and Engineering Chemistry, 104, (2021) 155-171. https://doi.org/10.1016/j.jiec.2021.08.019
  24. M. A. Azeez, O. C. Olatunde, Recent developments on the application of carbohydrate polymers, Journal of Applied Chemistry, 11(7), (2018) 68-80.
  25. A. S. Rathore, R. D. Gupta, Chitinases from bacteria to human: properties, applications, and future perspectives, Enzyme research, 1, (2015) 791907. https://doi.org/10.1155/2015/791907
  26. W. Liu, H. Du, H. Liu, H. Xie, T. Xu, X. Zhao, Y. Liu, X. Zhang, C. Si, Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustainable Chemistry & Engineering, 8(44), (2020) 16691-16700. https://doi.org/10.1021/acssuschemeng.0c06561
  27. W. Liu, Q. Lin, S. Chen, H. Yang, K. Liu, B. Pang, T. Xu, C. Si, Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Advanced Composites and Hybrid Materials, 6 (2023), 149. https://doi.org/10.1007/s42114-023-00725-1
  28. K. Liu, H. Du, T. Zheng, W. Liu, M. Zhang, H. Liu, X. Zhang, C. Si, Lignin-containing cellulose nanomaterials: preparation and applications. Green Chemistry, 23, (2021) 9723-9746. https://doi.org/10.1039/D1GC02841C
  29. K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Progress in polymer science, 37 (1), 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
  30. K. Wickramaarachchi, M. M. Sundaram, D. J. Henry, X. Gao, Alginate biopolymer effect on the electrodeposition of manganese dioxide on electrodes for supercapacitors. ACS Applied Energy Materials, 4(7), (2021) 7040-7051. https://doi.org/10.1021/acsaem.1c01111
  31. Y. Zheng, J. T. Wang, Y. F. Zhu, A. Q. Wang, Research and application of kapok fiber as an absorbing material: A mini review, Journal of Environmental Sciences, 27, (2015) 21-32. https://doi.org/10.1016/j.jes.2014.09.026
  32. H.W. Wang, H. Yi, C.R. Zhu, X.F. Wang, H. J. Fan, Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes, Nano Energy, 13, (2025), 658-669. https://doi.org/10.1016/j.nanoen.2015.03.033
  33. Q. L. Wei, F. Y. Xiong, S. S. Tan, L. Huang, E.H. Lan, B. Dunn, L.Q. Mai, Porous one‐dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage, Advanced Materials, 29(20), (2017) 1602300. https://doi.org/10.1002/adma.201602300
  34. Z. Jin, X. D. Yan, Y. H. Yu, G.J. Zhao, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, Journal of Materials Chemistry A, 2, (2014) 11706-11715. https://doi.org/10.1039/C4TA01413H
  35. I. Sakurada, Y. Nukushina, T. Ito, Experimental determination of the elastic modulus of crystalline regions in oriented polymers, Journal of Polymer Science, 57(165), (1962) 651-660. https://doi.org/10.1002/POL.1962.1205716551
  36. Y.J. Kang, S.J. Chun, S.S. Lee, B.Y. Kim, J. H. Kim, H. Chung, S.Y. Lee, W. Kim, All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels, ACS nano, 6(7), (2012) 6400-6406. https://doi.org/10.1021/nn301971r
  37. Z. Wang, D. O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm, M. Strømme, Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS nano, 9(7), (2015), 7563-7571. https://doi.org/10.1021/acsnano.5b02846
  38. F. Lai, Y.E. Miao, L. Zuo, H. Lu, Y. Huang, T. Liu, Small, Biomass‐derived nitrogen‐doped carbon nanofiber network: a facile template for decoration of ultrathin nickel‐cobalt layered double hydroxide nanosheets as high‐performance asymmetric supercapacitor electrode, small, 12(24), (2016), 3235-3244. https://doi.org/10.1002/smll.201600412
  39. S. Li, D. Huang, J. Yang, B. Zhang, X. Zhang, G. Yang, M. Wang, Y. Shen, Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy, 9, (2014) 309-317. https://doi.org/10.1016/j.nanoen.2014.08.004
  40. L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao and S.H. Yu, Three‐dimensional heteroatom‐doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors, Advanced Functional Materials, 24(22), (2014) 5104-5111. https://doi.org/10.1002/adfm.201400590
  41. C. Long, D. Qi, T. Wei, J. Yan, L. Jiang, Z. Fan, Nitrogen‐doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose, Advanced Functional Materials, 24(25), (2014) 3953-3961. https://doi.org/10.1002/adfm.201304269
  42. L. Mai, X. Tian, X. Xu, L. Chang, L. Xu, Nanowire electrodes for electrochemical energy storage devices, Chemical reviews, 114(23), (2014) 11828-11862. https://doi.org/10.1021/cr500177a
  43. Y. F. Cao, L. J. Xie, G. H. Sun, F. Y. Su, Q. Q. Kong, F. Li, W. P. Ma, J. Shi, D. Jiang, C. X. Lu and C. M. Chen, Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance, Sustainable Energy Fuels, 2, (2018) 455-465. https://doi.org/10.1039/C7SE00481H
  44. Q. Li, C.X. Lu, D.J. Xiao, H.F. Zhang, C.M. Chen, L.J. Xie, Y.D. Liu, S.X. Yuan, Q.Q. Kong, K. Zheng, J.Q. Yin, β‐Ni(OH)2 Nanosheet Arrays Grown on Biomass‐Derived Hollow Carbon Microtubes for High‐Performance Asymmetric Supercapacitors, Chem Electro Chem, 5(9), (2018) 1279-1287. https://doi.org/10.1002/celc.201800024
  45. Q.L. Wei, F.Y. Xiong, S.S. Tan, L. Huang, E.H. Lan, B. Dunn, L. Q. Mai, Porous one‐dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage, Advanced Materials, 29(20), (2017) 1602300. https://doi.org/10.1002/adma.201602300
  46. W.S. Chen, H.P. Yu, S.Y. Lee, T. Wei, J. Li, Z.J. Fan, Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 47, (2018) 2837-2872. https://doi.org/10.1039/C7CS00790F
  47. S. J. He and W. Chen, Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. Journal of power sources, 294, (2015) 150-158. https://doi.org/10.1016/j.jpowsour.2015.06.051
  48. Q. Jiang, Z.H. Zhang, S.Y. Yin, Z.P. Guo, S.Q. Wang, C.Q. Feng, Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Applied Surface Science, 379, (2016) 73-82. https://doi.org/10.1016/j.apsusc.2016.03.204
  49. K.Z. Hina, H.T. Zou, W. Qian, D.Y. Zuo, C.H. Yi, Preparation and performance comparison of cellulose-based activated carbon fibres. Cellulose, 25, (2018) 607-617. https://doi.org/10.1007/s10570-017-1560-y
  50. C.L. Long, D.P. Qi, T. Wei, J. Yan, L.L. Jiang, Z. J. Fan, Nitrogen‐doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Advanced Functional Materials, 24(25), (2014) 3953-3961. https://doi.org/10.1002/adfm.201304269
  51. C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, M. Sindoro and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chemical reviews, 117(9), (2017) 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558
  52. M. Liu, J. Niu, Z. Zhang, M. Dou, F. Wang, Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors, Nano Energy, 51, (2018) 366-372. https://doi.org/10.1016/j.nanoen.2018.06.037
  53. Y. Hou, M. Qiu, T. Zhang, X. D. Zhuang, C.S. Kim, C. Yuan, X.L. Feng, Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting, Advanced Materials, 29(35), (2017) 1701589. https://doi.org/10.1002/adma.201701589
  54. Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy & Environmental Science, 9 (2016), 478-483. https://doi.org/10.1039/C5EE03440J
  55. H. Wang, Z. W. Xu, A. Kohandehghan, Z. Li, K. Cui, X. H. Tan, T. J. Stephenson, C. K. King'ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia and D. Mitlin, Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS nano, 7(6), 5131-5141. https://doi.org/10.1021/nn400731g
  56. Z. J. Fan, Y. Liu, J. Yan, G.Q. Ning, Q. Wang, T. Wei, L.J. Zhi, F. Wei, Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors. Advanced Energy Materials, 2(4), (2012) 419-424. https://doi.org/10.1002/aenm.201100654
  57. F. Yi, H. Y. Ren, J. Y. Shan, X. Sun, D. Wei, Z.F. Liu, Wearable energy sources based on 2D materials. Chemical Society Reviews, 47, (2018) 3152-3188. https://doi.org/10.1039/C7CS00849J
  58. Z. Li, H.B. Wu, X.W. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy & Environmental Science, 9, (2016) 3061-3070. https://doi.org/10.1039/C6EE02364A
  59. Y.F. He, X.D. Zhuang, C.J. Lei, L.C. Lei, Y. Hou, Y. Y. Mai, X.L. Feng, Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications, Nano Today, 24, (2019) 103-119. https://doi.org/10.1016/j.nantod.2018.12.004
  60. T. Purkait, G. Singh, M. Singh, D. Kumar, R.S. Dey, Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor, Scientific reports, 7, (2017), 15239. https://doi.org/10.1038/s41598-017-15463-w
  61. D. Zhou, H.L. Wang, N. Mao, Y.R. Chen, Y. Zhou, T.P. Yin, H. Xie, W. Liu, S.G. Chen, X. Wang, High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte. Microporous and Mesoporous Materials, 241, (2017), 202-209. https://doi.org/10.1016/j.micromeso.2017.01.001
  62. Z. Ling, Z.Y. Wang, M.D. Zhang, C. Yu, G. Wang, Y.F. Dong, S.H. Liu, Y.W. Wang, J. S. Qiu, Sustainable synthesis and assembly of biomass‐derived B/N co‐doped carbon nanosheets with ultrahigh aspect ratio for high‐performance supercapacitors, Advanced functional materials, 26(1), (2016) 111-119. https://doi.org/10.1002/adfm.201504004
  63. Q. Wang, J. Yan, Z.J. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy & Environmental Science, 9, (2016) 729-762. https://doi.org/10.1039/C5EE03109E
  64. Y.D. Zhang, Z.A. Hu, Y.F. An, B.S. Guo, N. An, Y.R. Liang, H.Y. Wu, High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes, Journal of Power Sources, 311, (2016) 121-129. https://doi.org/10.1016/j.jpowsour.2016.02.017
  65. Y.D. Zhang, Z.G. Hu, Y.R. Liang, Y.Y. Yang, N. An, Z.M. Li, H.Y. Wu, Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors, Journal of materials chemistry A, 3(29), (2015) 15057-15067. https://doi.org/10.1039/C5TA02479J
  66. H. Jiang, P.S. Lee. C.Z. Li, 3D carbon based nanostructures for advanced supercapacitors, Energy & Environmental Science, 6, (2013) 41-53. https://doi.org/10.1039/C2EE23284G
  67. C. J. Chen, Y. Zhang, Y. J. Li, J. Q. Dai, J. W. Song, Y. G. Yao, Y. H. Gong, I. Kierzewski, J. Xie, L.B. Hu, All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance, Energy & Environmental Science, 10, (2017) 538-545. https://doi.org/10.1039/C6EE03716J
  68. K. L. Fang, J. Z. Chen, X. Y. Zhou, C. T. Mei, Q. H. Tian, J. L. Xu and C. P. Wong, Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors. Electrochimica Acta, 261, (2018) 198-205. https://doi.org/10.1016/j.electacta.2017.12.140
  69. X.L. Wu, T. Wen, H.L. Guo, S.B. Yang, X.K. Wang, A.W. Xu, Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors. ACS Nano, 7(4), (2013) 3589-3597. https://doi.org/10.1021/nn400566d
  70. J. Cui, Y. Xi, S. Chen, D. Li, X. She, J. Sun, W. Han, D. Yang, S. Guo, Prolifera‐green‐tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage, Advanced Functional Materials, 26(46), (2016) 8487-8495. https://doi.org/10.1002/adfm.201603933
  71. G.A. Ferrero, A.B. Fuertes, M. Sevilla, From Soybean residue to advanced supercapacitors. Scientific Reports, 5, (2015)16618. https://doi.org/10.1038/srep16618
  72. C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity, Journal of Materials Chemistry A, 6(3), (2018), 1244-1254. https://doi.org/10.1039/C7TA07579K
  73. J. He, D. Zhang, M. Han, X. Liu, Y. Wang, Y. Li, X. Zhang, K. Wang, H. Feng, Y. Wang, One-step large-scale fabrication of nitrogen doped microporous carbon by self-activation of biomass for supercapacitors application, Journal of Energy Storage, 21, (2019) 94-104. https://doi.org/10.1016/j.est.2018.11.015
  74. Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H. L. Li, J Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors, Journal of power sources, 307, (2016), 391-400. https://doi.org/10.1016/j.jpowsour.2016.01.020
  75. S.W. Xu, Y.Q. Zhao, Y.X. Xu, Q.H. Chen, G.Q. Zhang, Q.Q. Xu, D.D. Zhao, X. Zhang, C.L. Xu, Heteroatom doped porous carbon sheets derived from protein-rich wheat gluten for supercapacitors: The synergistic effect of pore properties and heteroatom on the electrochemical performance in different electrolytes, Journal of Power Sources, 401 (2018) 375-385. https://doi.org/10.1016/j.jpowsour.2018.09.012
  76. Y. Wang, H. Jiang, S. Ye, J. Zhou, J. Chen, Q. Zeng, H. Yang, T. Liang, N-doped porous carbon derived from walnut shells with enhanced electrochemical performance for supercapacitor, Functional Materials Letters, 12(3), (2019) 1950042. https://doi.org/10.1142/S1793604719500425
  77. S. Yan, J. Lin, P. Liu, Z. Zhao, J. Lian, W. Chang, L. Yao, Y. Liu, H. Lin, S. Han, Preparation of nitrogen-doped porous carbons for high-performance supercapacitor using biomass of waste lotus stems, RSC advances, 8(69), (2018) 6806-6813. https://doi.org/10.1039/C8RA08403C
  78. Y. Lin, Z. Chen, C. Yu, W. Zhong, Heteroatom-Doped Sheet-Like and Hierarchical Porous Carbon Based on Natural Biomass Small Molecule Peach Gum for High-Performance Supercapacitors, ACS Sustainable Chemistry & Engineering, 7(8), (2019) 3389-3403. https://doi.org/10.1021/acssuschemeng.9b00254
  79. M. Rana, K. Subramani, M. Sathish, U.K. Gautam, Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO2 capture, Carbon, 114, (2017) 679-689. https://doi.org/10.1016/j.carbon.2016.12.059
  80. B. Liu, Y. Liu, H. Chen, M. Yang, H. Li, Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors, Journal of power sources, 341, (2017) 309-317. https://doi.org/10.1016/j.jpowsour.2016.11.099