Abstract

Smooth and white spherical shaped TiO2 thin films are successfully deposited by Nebulizer Spray Pyrolysis (NSP) technique. The TiO2 thin films are characterized by XRD, SEM, DRS, PL and I-V analysis. Anatase phase polycrystalline tetragonal structure with preferential orientation along (1 0 1) direction obtained form XRD. The expansion and contraction of Ti-O bonds leads to a high crystalline nature with its purity at 289 nm. The absorbance increases with substrate temperature due to the decrease of film thickness, packing density and shrinkage of spray droplets. TiO2 thin films indicate that the film is made up of small granules having slab like particles with some voids at lower temperature. The tiny particles are combined together to form white spherical shaped flower particles with pinholes at 450oC. A room temperature resistivity of the film deposited at 400oC is found to be in the order of 105 Ω/cm, which decreases to 103 Ω/cm for the films prepared at 450oC.

Keywords

TiO2, Anatase, Tetragonal, DRS, NSP,

Downloads

Download data is not yet available.

References

  1. Z. Liu, X. Zhang, T. Murakami, A. Fujishima, Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties, Solar Energy Materials and Solar Cells 92(11) (2008) 1434-1438. https://doi.org/10.1016/j.solmat.2008.06.005
  2. R. Suresh, V. Ponnuswamy, R. Mariappan, N. Senthilkumar, Influence of substrate temperature on the properties of CeO2 thin films by simple nebulizer spray pyrolysis technique, Ceramics International 40(1) (2014) 437-445. https://doi.org/10.1016/j.ceramint.2013.06.020
  3. H. Peeters, M. Keulemans, G. Nuyts, F. Vanmeert, C. Li, M. Minjauw, C. Detavernier, S. Bals, S. Lenaerts, S.W. Verbruggen, Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings, Applied Catalysis B: Environmental 267 (2020) 118654. https://doi.org/10.1016/j.apcatb.2020.118654
  4. T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene, Applied Catalysis A: General, 244(2) (2003) 383-391. https://doi.org/10.1016/S0926-860X(02)00610-5
  5. M. Heikkilä, E. Puukilainen, M. Ritala, M. Leskelä, Effect of thickness of ALD grown TiO2 films on photoelectrocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 204(2-3) (2009) 200-208. https://doi.org/10.1016/j.jphotochem.2009.03.019
  6. X. Chen, S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chemical Reviews, 107 (2007) 2891-2959. https://doi.org/10.1021/cr0500535
  7. J. Yu, J. Fan and K. Lv, Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells, Nanoscale, 2 (2010) 2144-2149. https://doi.org/10.1039/C0NR00427H
  8. IbrahimA. Al-Homoudi, J.S. Thakur, R. Naik, G.W. Auner, G. Newaz, Anatase TiO2 films based CO gas sensor: Film thickness, substrate and temperature effects, Applied Surface Science, 253 (2007) 8607-8614.
  9. G. San Vicente, A. Morales, M.T. Gutierrez, Sol–gel TiO2 antireflective films for textured monocrystalline silicon solar cells, Thin Solid Films 403–404 (2002) 335-338. https://doi.org/10.1016/S0040-6090(01)01572-3
  10. Suman Dutta, 10 - Wastewater treatment using TiO2-based photocatalysts, Handbook of Smart Photocatalytic Materials, Fundamentals, Fabrications, and Water Resources Applications (2020) 303-323
  11. M. H. Habibi, N. Talebian and J. H. Choi, The effect of annealing on photocatalytic properties of nanostructured titanium dioxide thin films, Dyes and Pigments, 73 (1) (2007) 103-110. https://doi.org/10.1016/j.dyepig.2005.10.016
  12. Z. Haijing Yu, Jing Huang, Hua Zhang, Qingfei Zhao, Xinhua, Nanostructure and charge transfer in Bi2S3-TiO2 heterostructures, Nanotechnology 25 (2014) 215702. https://doi.org/10.1088/0957-4484/25/21/215702
  13. Z.F. Yin, L. Wu, H.G. Yang, Y.H. Su, Recent progress in biomedical applications of titanium dioxide, Physical Chemistry Chemical Physics, 15 (2013) 4844-4858. https://doi.org/10.1039/C3CP43938K
  14. M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Materials Science and Engineering C. 102 (2019) 844-862. https://doi.org/10.1016/j.msec.2019.04.064
  15. J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Physical Chemistry Chemical Physics, 16 (2014) 20382-20386. https://doi.org/10.1039/C4CP02201G
  16. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Scientific Reports, 4 (2014) 4043. https://doi.org/10.1038/srep04043
  17. A. Moses Ezhil Raj, V. Agnes, V. Bena Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, Spray deposition and property analysis of anatase phase titania (TiO2) nanostructures, Thin Solid Films 519(1) (2010) 129-135. https://doi.org/10.1016/j.tsf.2010.07.073
  18. Iijima Koji, Goto Masako, Enomoto Shogo, Kunugita Hideyuki, Ema Kazuhiro,Tsukamoto Masanori, Ichikawa Noriya, Sakama Hiroshi, Influence of oxygen vacancies on optical properties of anatase TiO2 thin films, Journal of Luminescence, 128(5-6) (2008) 911-913. https://doi.org/10.1016/j.jlumin.2007.11.071
  19. L. Romero, A.B. Jorge-Sobrido, P.F. McMillan, R. Binions, On titanium dioxide thin films growth from the direct current electric field assisted chemical vapour deposition of titanium (IV) chloride in toluene, Thin Solid Films 584(1) (2015) 320-325. https://doi.org/10.1016/j.tsf.2015.01.057