Abstract

The present study was aimed to test the efficacy of Leptogium marginellum (Lm) extract and synthesized silver nanoparticles (AgNP’s) against mosquito larvae. The synthesized LmAgNP’s was measured for its Surface Plasmon Resonance and the peak was observed at 428nm. FTIR results recorded a downward shift of absorbance band between 450-4000 cm-1 indicated the formation of Lm AgNP’s which are spherically shaped with a size range from 150-200 nm confirmed using FESEM. Further, XRD analysis demonstrated LmAgNP’s are highly crystalline and exhibit a cubic, face centered lattice with characteristic (111), (200), (220) and (222) orientation. The bio-reduction of silver ions in solution was monitored by EDX. The zeta potential value was found to be -3.08 mV representing AgNP’s were highly stable. Radical scavenging results revealed that the extracts and AgNP’s demonstrated potent scavenging ability evidenced by DPPH, FRAP and H2O2 radical assay. Lm fractions and Lm AgNP’s exhibited dose dependent larval mortality, highest mortality was observed in ethylacetate fraction against Anopheles stephensi (ICc50=34.66; IC90=158.647), followed by Culex quinquefasciatus (ICc50=40.085; IC90=213.777) and Aedes aegypti (IC50=70.673; IC90=248.836). Larvae treated with LmAgNP’s at different concentration represented potent mortality but at 500 ppm concentration demonstrated significant mortality with 88, 94.4, 98.4% mortality with highest activity against Anopheles stephensi (ICc50=47.41) followed by Aedes aegypti and Culex quinquefasciatus (IC50=71.66; IC50=74.44). Based on the present findings it is suggested that the fractions and AgNP’s of Lm is effective in inhibiting the growth of mosquito larvae.

Keywords

Lichen, Leptogium marginellum, Silver nanoparticles, FESEM, Antioxidant, Larvicidal activity,

Downloads

Download data is not yet available.

References

  1. N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Materials Advances, 2(2021) 1821-1871. https://doi.org/10.1039/D0MA00807A
  2. R. Rani, D. Sharma, M. Chaturvedi, J.P. Yadav, Green synthesis of silver nanoparticles using Tridax procumbens: their characterization, antioxidant and antibacterial activity against MDR and reference bacterial strains, Chemical Papers, 74(6), (2020) 1817-1830. https://doi.org/10.1007/s11696-019-01028-w
  3. H. Yousaf, A. Mehmood, K.S. Ahmad, M. Raffi, Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agent, Materials Science and Engineering, 112, (2020) 110901. https://doi.org/10.1016/j.msec.2020.110901
  4. T. Lee, K.L. Yeh, J.X. You, Y.C. Fan, Y.S. Cheng, D.E. Pratama, (2020). Reproducible Crystallization of Sodium Dodecyl Sulfate·1/8 Hydrate by Evaporation, Antisolvent Addition, and Cooling. ACS Omega, 5(2), 1068-1079. https://doi.org/10.1021/acsomega.9b03067
  5. X. Ruan, P. Sun, X. Ouyang, G. Qian, Characteristics and mechanisms of sorption of organic contaminants onto sodium dodecyl sulfate modified Ca-Al layered double hydroxides. Chinese Science Bulletin, 56, (2011) 3431-3436. https://doi.org/10.1007/s11434-011-4762-y
  6. P. Zhang, M. Xiang, P. Li, S. Ouyang, T. He, Q. Deng, The enhancement roles of sulfate on the adsorption of sodium dodecylsulfate by calcium-based layered double hydroxide: microstructure and thermal behaviors, Environmental Science and Pollution Research, 26, (2019) 19320-19326. https://doi.org/10.1007/s11356-019-05295-8
  7. P. Szczyglewska, A. Feliczak-Guzik, I. Nowak, Nanotechnology-General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles, Molecules, 28, (2023) 4932. https://doi.org/10.3390/molecules28134932
  8. A.D. Pomogailo, G.I. Dzhardimalieva, (2014) Physical-Chemical Methods of Nanocomposite Synthesis. In Nanostructured Materials Preparation via Condensation Ways. Springer Netherlands. 91-139. https://doi.org/10.1007/978-90-481-2567-8_3
  9. K. Syed Zameer Ahmed, S. Sidhra, S. Jagadeeswari, M. Mohamed Rafi, P.V. Kisore, R. Kishore, (2018). A comparative study on larvicidal potential of selected medicinal plants over green synthesized silver nano particles, Egyptian Journal of Basic and Applied Sciences, 5(1), 54-62. https://doi.org/10.1016/j.ejbas.2018.01.002
  10. K. Poongothai, P. Ponmurugan, K.S.Z. Ahmed, B.S. Kumar, S. Sheriff, Antihyperglycemic and antioxidant effects of Solanum xanthocarpum leaves (field grown & in vitro raised) extracts on alloxan induced diabetic rats, Asian Pacific Journal of Tropical Medicine, 4(10), (2011) 778-785. https://doi.org/10.1016/S1995-7645(11)60193-4
  11. A. Naganthran, G. Verasoundarapandian, F.E. Khalid, M.J. Masarudin, A. Zulkharnain, NM. Nawawi, M. Karim, C.A. Che Abdullah, S.A. Ahmad, (2022). Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials. 15. 427. https://doi.org/10.3390/ma15020427
  12. S.K. Kale, G.V. Parishwad, A.S.N. Husainy, A.S. Patil, (2021). Emerging Agriculture Applications of Silver Nanoparticles. ES Food & Agroforestry, 3(2021), 17-22. https://doi.org/10.30919/esfaf438
  13. K. Syed Zameer Ahmed, S. Sidhra, A. Thangakumar, R. Krishnaveni, Therapeutic effectof Parmotrema tinctorum against complete Freund's adjuvant-induced arthritis in rats and identification of novel Isophthalic ester derivative, Biomedicine & Pharmacotherapy, 112 (2019), 108646. https://doi.org/10.1016/j.biopha.2019.108646
  14. S.Z.A. Khader, S.S.Z. Ahmed, M.R. Mahboob, S.B. Prabaharan, S.O. Lakshmanan, K.R. Kumar, D. David, In vitro anti-inflammatory, anti-arthritic and anti- proliferative activity of green synthesized silver nanoparticles - Phoenix dactylifera (Rothan dates), Brazilian Journal of Pharmaceutical Sciences, (2022) 58. https://doi.org/10.1590/s2175-97902022e18594
  15. S. Vigneswari, TSM. Amelia, MH. Hazwan, GK. Mouriya, K. Bhubalan, A.A.A. Amirul, S. Ramakrishna, Transformation of Biowaste for Medical Applications: Incorporation of Biologically Derived Silver Nanoparticles as Antimicrobial Coating. Antibiotics, 10(3), (2021) 229. https://doi.org/10.3390/antibiotics10030229
  16. S. Sivakumar, V. Hariharakrishnan, Optical properties, total control of Gram-positive and Gram-negative bacteria, anti-fungal activity using Ag nanoparticles synthesized by eco-friendly approach, Applied Nanoscience, 13, (2023) 7537-7544. https://doi.org/10.1007/s13204-023-02957-5
  17. S. Mahmood, TS. Mei, WX. Yee, A.R. Hilles, W. Alelwani, A.M. Bannunah, Synthesis of Capsaicin Loaded Silver Nanoparticles Using Green Approach and Its Anti-Bacterial Activity Against Human Pathogens, Journal of Biomedical Nanotechnology, 17(8), (2012) 1612-1626. https://doi.org/10.1166/jbn.2021.3122
  18. X. Gong, ND. Jadhav, V.V. Lonikar, A.N. Kulkarni, H. Zhang, B.R. Sankapal, J. Ren, B. Xu, H.M. Bin Pathan, Y. Ma, Z. Lin, E. Witherspoon, Z. Wang, Z. Guo, An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications, Advances in Colloid and Interface Science, 323, (2024) 103053. https://doi.org/10.1016/j.cis.2023.103053
  19. A. Chauhan, J. Anand, V. Parkash, N. Rai, Biogenic synthesis: a sustainable approach for nanoparticles synthesis mediated by fungi, Inorganic and Nano-Metal Chemistry, 53(5), (2023) 460-473. https://doi.org/10.1080/24701556.2021.2025078
  20. E. Miguel, V. Grosbois, A. Caron, D. Pople, B. Roche, C.A. Donnelly, A systemic approach to assess the potential and risks of wildlife culling for infectious disease control, Communications Biology, 3(1), (2020) 353. https://doi.org/10.1038/s42003-020-1032-z
  21. T. Manimegalai, K. Raguvaran, M. Kalpana, R. Maheswaran, Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera, Environmental Science and Pollution Research, 27(34), (2020) 43103-43116. https://doi.org/10.1007/s11356-020-10127-1
  22. J.J. Wilson, S. Mahendran, T. Sivakumar, P. Ponmanickam, R. Thangaraj, Mosquito larvicidal activity of silver nanoparticles synthesized using Azolla pinnata against Culex quinquefasciatus Say (Diptera: Culicidae), South African Journal of Botany, 157(2023) 380-386. https://doi.org/10.1016/j.sajb.2023.04.019
  23. C. Kamaraj, C. Ragavendran, P. Prem, S. Naveen Kumar, A. Ali, A. Kazmi, A. Ullah, R. Chandra Satish Kumar, S.U. Khan, J.P. Luna-Arias, Z.-U.-R. Mashwani, G. Balasubramani, S.U. Rehman, Exploring the Therapeutic Potential of Traditional Antimalarial and Antidengue Plants: A Mechanistic Perspective, Canadian Journal of Infectious Diseases and Medical Microbiology, (2023) 1-20. https://doi.org/10.1155/2023/1860084
  24. M. Goga, J. Elečko, M. Marcinčinová, D. Ručová, M. Bačkorová, M. Bačkor, (2020) Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In: Mérillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_57
  25. S.Z.A., Khader, S.S.Z. Ahmed, K.P. Venkatesh, K. Chinnaperumal, S. Nayaka, Larvicidal potential of selected indigenous lichens against three mosquito species-Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi, Chinese Herbal Medicines, 10(2), (2018) 152-156. https://doi.org/10.1016/j.chmed.2018.03.002
  26. K. Syed Zameer Ahmed, S. Sidhra, P. Ponmurugan, B. Senthil Kumar, Ameliorative potential of Solanum trilobatum leaf extract and fractions on lipid profile and oxidative stress in experimental diabetes, Pakistan Journal of Pharmaceutical Sciences, 29(5), (2016) 1571-1578.
  27. K. Syed Zameer Ahmed, S. Sidhra, B. Senthil Kumar, A. Thanga kumar, K. Geetha, M. Mohamed Rafi, P. Ponmurugan, R. Kishore, Modulatory effect of dianthrone rich alcoholic flower extract of Cassia auriculata L. on experimental diabetes, Integrative Medicine Research, 6(2), (2017) 131-140. https://doi.org/10.1016/j.imr.2017.01.007
  28. K. Shimada, K. Fujikawa, K. Yahara, T. Nakamura, Antioxidative properties of xanthan on the autioxidation of soybean oil in cyclodextrin emulsion, Journal of Agricultural and Food Chemistry, 40(6), (1992) 945-948. https://doi.org/10.1021/jf00018a005
  29. M. Oyaizu, Studies on product of browning reaction prepared from glucoseamine, Japan Journal of Nutrition, 44(6), (1986) 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  30. B. Halliwell, J.M.C. Gutteridge, O.I. Aroma, The deoxyribose method: A simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals, Analytical Biochemistry, 165(1), (1987) 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  31. K. Chandhirasekar, A. Thendralmanikandan, P. Thangavelu, B.-S. Nguyen, T.-A. Nguyen, K. Sivashanmugan, A. Nareshkumar, V.-H. Nguyen, Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica, Materials Letters, 287, (2021) 129265. https://doi.org/10.1016/j.matlet.2020.129265
  32. M. Ben Salah, C. Aouadhi, A. Khadhri, Green Roccella phycopsis Ach. mediated silver nanoparticles: synthesis, characterization, phenolic content, antioxidant, antibacterial and anti-acetylcholinesterase capacities, Bioprocess and Biosystems Engineering, 44(11), (2021) 2257-2268. https://doi.org/10.1007/s00449-021-02601-y
  33. M. Goga, M. Baláž, N. Daneu, J. Elečko, Ľ. Tkáčiková, M. Marcinčinová, M. Bačkor, Biological activity of selected lichens and lichen-based Ag nanoparticles prepared by a green solid-state mechanochemical approach, Materials Science and Engineering: C, 119, (2021) 111640. https://doi.org/10.1016/j.msec.2020.111640
  34. S. Dawadi, S. Katuwal, A. Gupta, U. Lamichhane, R. Thapa, S. Jaisi, G. Lamichhane, D.P. Bhattarai, N. Parajuli, Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications, Journal of Nanomaterials, (2021) 1-23. https://doi.org/10.1155/2021/668729
  35. A.B. Pool, R.H. Castillo, D. Canto-Reyes, R. Castro-Rodriguez, I.V. Pérez-Quintana, M. Acosta, J.A. Mendez-Gamboa, Development of nanostructured silver layers via colloidal lithography for AZO/Ag/AZO transparent conductive oxide applications. Journal of Nanoparticle Research, 25(11), (2023) 219. https://doi.org/10.1007/s11051-023-05868-2
  36. P. Gupta, S.Z.A. Khader, S. Syed Zameer Ahmed, A. Kaliyannan Rajavel, S. Sawant, P. Manickam, Exploration of the aptitude to alleviate oxidative impairment and curb colorectal cancer manifestation by Nostoc calcicola in HT-29 adenocarcinoma cells, Future Journal of Pharmaceutical Sciences, 9(1), (2023) 102. https://doi.org/10.1186/s43094-023-00557-2
  37. O. Tufan-Cetin, A. Cengiz, Z.N. Gultekin, S. Kahraman, B. Polat, S. Koc, H. Cetin, (2023). Total phenolic and flavonoid contents of oakmoss lichen Evernia prunastri extracts and their insecticidal activities against larvae of two vector mosquitoes, Aedes aegypti and Culex pipiens, International Journal of Tropical Insect Science. 43(4), 1355-1363. https://doi.org/10.1007/s42690-023-01044-0
  38. A. Abraham, (2024) Synergistic crop virus disease complexes in Sub-saharan Africa causes, consequences and control, Phytoparasitica, 52(1), 27. https://doi.org/10.1007/s12600-024-01143-9
  39. S.Z.A. Khader, S. Syed Zameer Ahmed, M. Raju, M. Mohamed Rafi, S. Sundarraj, K.R. Abithaa C. Kamaraj, S. Dhanush, Dioxepine-derived surface-capping gold nanoparticles (Dd-AuNPs) induces ROS-mediated apoptosis and cell cycle arrest in A549 human lung cancer cell line. Gold Bulletin, 57, (2024) 65-77. https://doi.org/10.1007/s13404-024-00348-4
  40. C. Antonio-Nkondjio, N.N. Sandjo, P. Awono-Ambene, C.S. Wondji, Implementing a larviciding efficacy or effectiveness control intervention against malaria vectors: key parameters for success, Parasites & Vectors, 11(1), (2018) 57. https://doi.org/10.1186/s13071-018-2627-9
  41. D. Kumar, P. Kumar, H. Singh, V. Agrawal, Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. Environmental Science and Pollution Research, 27(21), (2020) 25987-26024. https://doi.org/10.1007/s11356-020-08444-6
  42. A. Negri, G. Pezzali, S. Pitton, M. Piazzoni, P. Gabrieli, F. Lazzaro, V. Mastrantonio, D. Porretta, C. Lenardi, S. Caccia, C. Bandi, S. Epis, MosChito rafts as a promising biocontrol tool against larvae of the common house mosquito, Culex pipiens. PLOS ONE, 18(12), (2023) e0295665. https://doi.org/10.1371/journal.pone.0295665
  43. G. Benelli, A. Caselli, A. Canale, Nanoparticles for mosquito control: Challenges and constraints, Journal of King Saud University – Science, 29(4), (2017) 424-435. https://doi.org/10.1016/j.jksus.2016.08.006
  44. E.S. Edwin, P. Vasantha Srinivasan, S. Senthil Nathan, A. Thanigaivel, A. Ponsankar, V. Pradeepa, N.A. Al Dhabi, Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae), Acta Tropica, 163, (2016) 167-178. https://doi.org/10.1016/j.actatropica.2016.07.009