The study is dedicated to a comprehensive examination of copper oxide nanoparticles, with a primary focus on their fabrication and systematic analysis. The principal objectives encompass the synthesis of CuO nanoparticles through a straightforward precipitation method, the structural characterization through X-ray diffraction (XRD), the determination of particle size and morphology using transmission electron microscopy (TEM), the analysis of functional groups within the CuO nanoparticles via Fourier transform infrared (FT-IR) spectroscopy, and the exploration of absorbance peaks utilizing UV-Vis spectroscopy. The research outcomes unlock novel prospects for scientific and technological advancements, offering crucial insights into the intrinsic properties and potential applications of copper oxide nanoparticles.


Nanoparticles, XRD, TEM, FT-IR,


Download data is not yet available.


  1. M.J. Guajardo-Pachecoa, J.E. Morales-Sanchz, J. González-Hernándezc, F. Ruiz, Synthesis of copper nanoparticles using soybeans as a chelant agent. Materials Letters, 64 (2010) 1361-1364.
  2. Y. Xi, C. Hu, P. Gao, R. Yang, X. He, X. Wang, B. Wan, Morphology and phase selective synthesis of Cux O (x = 1, 2) nanostructures and their catalytic degradation activity. Materials Science and Engineering: B 166 (2010) 113-117.
  3. Y. He, A novel solid-stabilized emulsion approach to CuO nanostructures microspheres. Materials Research Bulletin, 42 (2007) 190-195.
  4. M.C. Linder, M. Hazegh-Azam, Copper biochemistry and molecular biology. The American journal of clinical nutrition. 63 (1996) 797-811.
  5. S. Raha, R. Mallick, S. Basak, A.K. Duttaroy Is copper beneficial for COVID-19 patients?. Medical Hypotheses, 142 (2020) 109814.
  6. M. Bost, S. Houdart, M. Oberli, E. Kalonji, J.F. Huneau, I. Margaritis, Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35 (2016) 107-115.
  7. Z. Shabbir, A. Sardar, A. Shabbir, G. Abbas, S. Shamshad, S. Khalid, N. Natasha, G. Murtaza, C. Dumat, M. Shahid, Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere. 19 (2020) 127436.
  8. M. Latorre, R. Troncoso, R. Uauy. Biological Aspects of Copper. In Clinical and Translational Perspectives on Wilson Disease, (2019) 25-31.
  9. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Dielectric constant of multiferroic pure and doped CuO nanoparticles. Solid State Commun. 192 (2014) 71–74.
  10. M. Thiruvengadam, I.M. Chung, T. Gomathi, M.A. Ansari, V.G. Khanna, V. Babu, G. Rajakumar. Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioprocess Biosyst Eng. 42 (2019) 1769–1777.
  11. O. Rubilar, M. Rai, G. Tortella, M.C. Diez, A.B. Seabra, N. Duran, Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett. 35 (2013) 1365–1375.
  12. O. Waser, M. Hess, A. Guntner, P. Novak, S.E. Pratsinis, Size controlled CuO nanoparticles for Li-ion batteries. Journal of Power Sources, 241 (2013) 415-422.
  13. H.R. Ghorbani, I. Fazeli, A.A. Fallahi, (2015). Biosynthesis of copper oxide nanoparticles using extract of E. coli. Orient Journal of Chemistry, 31(1), 515-517.