Abstract

Previous studies showed that chemical modified Bacillus subtilis biomass possessed the high potential for recovery rare-earth elements, and, in this study, mathematical models were applied to explain the B. subtilis biomass La3+ and Sm3+ ions sorption capacity. The experimental isotherm data were analyzed using Langmuir, Freundlich, Temkin, and DRK equations. Both Langmuir and Freundlich isotherms models that fit the equilibrium data. Temkin model showed that it occurs physisorption. In more dilute solutions, the adsorption preference follows the order La3+ > Sm3+. With the increase in the concentration of rare-earth elements, there is an inversion in the preference for Sm3+ > La3+. The results demonstrate that the optimum model for describing the kinetics of the biosorption of both rare-earth elements is the pseudo-second-order model as well as the viability of recovering lanthanum using bacterial biomass sorbents, a practical technique.

Keywords

Adsorption Equilibrium, Adsorption Kinetics, Bacillus Subtilis, Rare Earth Elements,

Downloads

Download data is not yet available.

References

  1. B. Fein, C.J. Daughney, N. Yee & T. Davis, A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochimica et Cosmoschimica Acta, 61(1997) 3319-3328.
  2. Y.G. Liu, T. Liao, Z.B. He, T.T. Li, H. Wang, X.J. Hu, Y.M. Guo & Y. He. Biosorption of copper (II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads. The Transactions of Nonferrous Metals Society of China, 23 (2013) 1804-1814.
  3. R.E. Martínez, O. Pourret & Y. Takahashi, Modeling of rare earth element sorption to the Gram-positive Bacillus subtilis bacteria surface. The Journal of Colloid and Interface Science, 413 (2014) 106-111.
  4. Y. Takahashi, T.X. Chatellier, K.H. Hattori, K. Kato & D. Fortin, Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chemical Geology, 219 (2005) 53-67.
  5. A.R. Richard & M. Fan, Rare earth elements: Properties and applications to methanol synthesis catalysis via hydrogenation of carbon oxides. Journal of Rare Earths, 36 (2018) 1127-1135.
  6. C.L. Owens, G.R. Nash, K. Hadler, R.S. Fitzpatrick & F. Wall, Apatite enrichment by rare earth elements: A review of the effects of surface properties. Advances in Colloid and Interface Science, 265 (2019) 14-28.
  7. A. Breuker, S.F. Ritter & A. Schippers, Biosorption of rare earth elements by different microorganisms in acidic solutions. Metals, 10 (2020) 954.
  8. N.V. Coimbra, F.S. Gonçalves, M. Nascimento & E.C. Giese, Study of adsorption isotherm models on rare earth elements biosorption for separation purposes, International Journal of Materials and Metallurgical Engineering, 13 (2019) 86.
  9. E.C. Giese & C.S. Jordão, Biosorption of lanthanum and samarium by chemically modified Bacillus subtilis free cells. Applied Water and Science, 9 (2019) 182.
  10. N.K. Gupta, A. Sengupta, A. Gupta, J.R. Sonawane & H. Sahoo, Biosorption - an alternative method for nuclear waste management: A critical review. Journal of Environmental Chemical Engineering, 6 (2018) 2159-2175.
  11. E.C. Giese, D.D.V. Silva, A.F.M. Costa, S.G.C. Almeida & K.J. Dussán, Immobilized microbial nanoparticles for biosorption. Critical Reviews in Biotechnology, 40 (2020) 653-666.
  12. N. Das & D. Das, Recovery of rare earth metals through biosorption: An overview. Journal of Rare Earths, 31 (2013) 933-943.
  13. E.C. Giese, Biosorption as green technology for the recovery and separation of rare earth elements. World Journal of Microbiology and Biotechnology, 36 (2020) 52.
  14. E.C. Giese, Mining applications of immobilized cells in alginate matrix: an overview. Revista Internacional de Contaminación Ambiental, 36 (2020) 775-787.
  15. R.P. Weeden, B. Berlinger & J. Aaseth, Lanthanum. Handbook of the Toxicology of Metals, 2 (2015) 903-909.
  16. Y. Ma, X. Wang, S. Li, M.S. Toprak, B. Zhu & M. Muhammed, Samarium‐doped ceria nanowires: novel synthesis and application in low‐temperature solid oxide fuel cells. Advanced Materials, 22 (2010) 1640-1644.
  17. I. Langmuir, Adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (1918) 1361-1403.
  18. H. Freundlich, Over the adsorption in solution. The Journal of Physical Chemistry, 57 (1906) 384-410.
  19. A. Dabrowski, Adsorption-from theory to practice. Advances in Colloid and Interface Science, 93 (2001) 135-224.
  20. K.A.M. Said, N.Z. Ismail, R.L. Jama'in, N.A.M. Alipah, N.M. Sutan, G.G. Gadung, R. Baini & N.S.A. Zauz, Application of Freundlich and Temkin isotherm to study the removal of Pb(II) via adsorption on activated carbon equipped polysulfone membrane. International Journal of Engineering and Technology, 7 (2018) 91-93.
  21. L. Largitte & R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109 (2016) 495-504.
  22. Y.S. Ho & G. Makay, Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70 (1998) 115-124.
  23. W.J. Weber Jr. & J.C. Morris, Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division, 89 (1963) 31-39.
  24. D. Kavitha & C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98 (2007) 14-21.
  25. G.E. Boyd, J. Schubert & A.W. Adamson, The exchange adsorption of ions from aqueous solutions by organic zeolites, I: Ion exchange equilibrium. Journal of the American Chemical Society, 69 (1947) 2818-2829.
  26. E.C. Giese, A.M. Barbosa-Dekker & R.F.H. Dekker, Biosorption of lanthanum and samarium by viable and autoclaved mycelium of Botryosphaeria rhodina MAMB-05. Biotechnology Progress, (2019) e2783.
  27. Ş. Sert, C. Kütahyali, S. İnan, Z. Talip, B. Çetinkaya & M. Eral, Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy, 90 (2008) 13-18.
  28. L.R. Bergsten-Torralba, C.R.S. Nascimento, D.F. Buss & E.C. Giese, Kinetics and equilibrium study for the biosorption of lanthanum by Penicillium simplicissimum INCQS 40,211. 3 Biotech, 11 (2021) 460.
  29. M.A. Al-Ghouti & D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393 (2020) 122383.
  30. R.N.P. Teixeira, V.O. Sousa Neto, J.T. Oliveira, T.C. Oliveira, D.Q. Melo, M.A.A. Silva & R.F. Nascimento, Study on the use of roasted barley powder for adsorption of Cu2+ ions in batch experiments and in fixed-bed columns. BioResources, 8 (2013) 3556-3573.
  31. H.M. Marwani, H.M. Albishri, T.A. Jalal & E.M. Soliman, Study of isotherm and kinetic models of lanthanum adsorption on activated carbon loaded with recently synthesized Schiff’s base. Arabian Journal of Chemistry, 10 (2017) S1032-S1040.
  32. M.X. Loukidou, T.D. Karapantsios, A.I. Zouboulis & K.A. Matis, Diffusion kinetic study of cadmium(II) biosorption by Aeromonas caviae. Journal of Chemical Technology & Biotechnology, 7 (2004) 711-719.
  33. F.W. Sousa, A.G. Oliveira, J.P. Ribeiro, M.F. Rosa, D. Keukeleire & R.F. Nascimento, Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. Journal of Environmental Management, 91 (2010) 1634-1640.
  34. Z.S. Birungi & E.M.N. Chirwa, The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: Comparative analysis. Bioresource Technology, 160 (2014) 43-51.
  35. K. Vijayaraghavan, M. Sathishkumar & R. Balasubramanian, Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, Turbinaria Conoides. Industrial & Engineering Chemistry Research, 49 (2010) 4405-4411.