IRJMT invites application for new board members (Should have more than 15 Scopus H index)

Investigation of Electrochemical Performance of PmAP/WO3 Composite

Muktikanta Panigrahi
Department of Materials Science, Keonjhar Campus, Maharaja Sriram Chandra Bhanja Deo University, Odisha, India.


Plum Analytics


PmAP and PmAP/WO3 composite are synthesized by chemical oxidation polymerization process. Synthesized materials are investigated by UV Visible, SEM and cyclic-voltagram (CV) techniques. SEM study of as prepared materials is indicated formation of different sized crystals (small and aggregated). In UV Visible spectra analyses, both transitioned (i.e., π-π* transition and charge transfer of polaron band) are observed. Tauc expression is used to estimate optical band gap. Estimated optical band gap is to be 3.09 eV. Oxidation-reduction potential profile is detected in cyclic voltammetry (CV) analyses of PmAP and PmAP/WO3 composite.


  • Substituted Monomer,
  • PmAP,
  • WO3,
  • Morphology Cyclic Voltammetry (CV)


  1. F. Cataldo, P. Maltese, Synthesis of alkyl and N- alkyl substituted polyaniline: A study on their spectral properties and thermal stability, European Polymer Journal, 38 (2002) 1791-1803.
  2. A. Falcou, A. Dhcuene, P. Hourquebie, D. Marsaeq, A. Balland-Longeall, A new chemical polymerization process for substituted anilines: Application to the synthesis of poly (Nalkylanilines) and poly(o-alkylanilines) and comparison of their respective properties, Synthetic Metals 149 (2005) 115-122.
  3. Y.W. Park, J.S. Moon, M.K. Bak, J.-I. Jin, Electrical properties of polyaniline and substituted polyaniline derivatives, Synthetic Metals, 29 (1989) 389-394.
  4. J. Yue, A.J. Epstein, Synthesis of self-doped conducting polyaniline, Journal of American Chemical Society, 112 (1990) 2800-2801.
  5. V.M. Mohan, W. Chen, K. Murakami, Synthesis, structure and electrochemical properties of polyaniline/MoO3 nanobelt composite for lithium battery, Materials Research Bulletin, 48 (2013) 603-608.
  6. N. Ballav, M. Biswas, Conductive composites of polyaniline and polypyrrole with MoO3 Materials Letters, 60 (2006) 514-517.
  7. Y. Li, Y. Xiang, X. Dong, J. Xu, F. Ruan, Q. Pan, Polymerization of aniline in the interlayer space of molybdenum trioxide and its electrochemical properties, Journal of Solid-State Chemistry 182 (2009) 2041-2045.
  8. T. Wen, Q. Fan, X. Tan, Y. Chen, C. Chen, A. Xu, X. Wang, A core-shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr (VI) and humic acid removal, Polymer Chemistry 7 (2016) 785-794.
  9. M.H. Yang, S.B. Hong, B.G. Choi, Hierarchical core/shell structure of MnO2/polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Physical Chemistry Chemical Physics 17 (2015) 29874-29879.
  10. C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, Constructing Uniform Core-Shell PPy/PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption, ACS Applied Materials Interfaces 7 (2015) 20090-20099.
  11. R. Liu, D. Li, C. Wang, N. Li, Q. Li, X. Lü, J. S. Spendelow, G. Wu, Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries, Nano Energy 6 (2014) 73-81.
  12. J.Y. Wu, K.Y. Hsu, Controllable fabrication of SiO2-polypyrrole core-shell dimer and trimer spheres, Journal of Materials Science: Materials in Electronics, 26 (2015) 3148-3154.
  13. X. Wang, T. Wang, D. Liu, J. Guo, and P. Liu, Synthesis and Electrochemical Performance of CeO2/PPy Nanocomposites: Interfacial Effect, Industrial & Engineering Chemistry Research 55 (2016) 866-874.
  14. S. Xuan, Q. Fang, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, Fabrication of spindle Fe2O3/polypyrrole core/shell particles by surfacemodified hematite templating and conversion to spindle polypyrrole capsules and carbon capsules, Journal of Colloid and Interface Science 314 (2007) 502-509.
  15. M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3, Advanced Functional Materials, 23 (2013) 215-226.
  16. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, Role of the deep-lying electronic states of MoO3 in the enhancement of holeinjection in organic thin films, Applied Physics Letter 95 (2009) 123301-123303.
  17. T. Ressler, J. Wienold, R.E. Jentoft, F. Girgsdies, Evolution of Defects in the Bulk Structure of MoO3 During the Catalytic Oxidation of Propene, European Journal of Inorganic Chemistry 2003(2013) 301-312.
  18. M. Ferroni, V. Guidi, G. Martinelli, M. Sacerdoti, P. Nelli, G. Sberveglieri, MoO3-based sputtered thin films for fast NO2 detection, Sensors and Actuators B, 48 (1998) 285-288.
  19. K. Galatsis, Y.X.Li, W. Wlodarski, K. Kalantar-Zadeh, Sol-gel prepared MoO3-WO3 thin-films for O2 gas sensing, Sensors and Actuators B: Chemical 77(2001) 478-483.
  20. A.K. Prasad, P.I. Gouma, D.J. Kubinski, J.H. Visser, R.E. Soltis, P.J. Schmitz, Reactively sputtered MoO3 films for ammonia sensing, Thin Solid Films 436 (2003) 46-51.
  21. C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, A new preparation method for sputtered MoO3 multilayers for the application in gas sensors, Sensors and Actuators B: Chemical, 78 (2001)119-125.
  22. K. Galatsis, Y.X. Li, W. Wlodarski, E. Comini, G. Faglia, G. Sberveglieri, Semiconductor MoO3-TiO2 thin film gas sensors, Sensors and Actuators B: Chemical, 77 (2001) 472-477.
  23. P. Kar, N.C. Pradhan, B. Adhikari, A novel route for the synthesis of Processable conducting poly(m-aminophenol), Materials Chemistry and Physics, 111 (2008) 59-64.
  24. A. Chithambararaj, D.B. Mathi, N.R. Yogamalar A.C. Bose, Structural evolution and phase transition of [NH4]6Mo7O24.4H2O to 2D layered MoO3−x, Materials Research Express 2 (2015) 055004-055013.
  25. M.E.M. Hassouna, M.E.M.A. Hafez, Poly m-Aminophenol/Montmorillonite Nanocomposite for Adsorption of Lead from Authentic Water Samples and Spiked River Nile Water, International Journal of Engineering Research & General Science 3 (2015) 6-18.
  26. H.S. Abdulla, A.I. Abbo, Optical and Electrical Properties of Thin Films of Polyaniline and Polypyrrole, International Journal of Electrochemical Science 7 (2012) 10666-10678.
  27. J. Molina, M. F. Esteves, J. Fernández, J. Bonastre, F. Cases, Polyaniline coated conducting fabrics. Chemical and electrochemical characterization, European Polymer Journal 47 (2011) 2003-2015.
  28. R. Ansari, M.B. Keivani, Polyaniline Conducting Electroactive Polymers: Thermal and Environmental Stability Studies, E-Journal of Chemistry 3 (2006) 202-217.
  29. L. Zhang, Q. Lang, Z. Shi, Electrochemical Synthesis of Three-Dimensional Polyaniline Network on 3-Aminobenzenesulfonic Acid Functionalized Glassy Carbon Electrode and Its Application, American Journal of Analytical Chemistry 1 (2010) 102-112.
  30. G. Zhang, X. Li, H. Jia, X. Pang, H. Yang, Y. Wang, K. Ding, Preparation and Characterization of Polyaniline (PANI) doped Li3V2(PO4)3, International Journal of Electrochemical Science 7 (2012) 830-843.
  31. Y. Wang, H. Xu, J. Zhang, G. Li, Review Electrochemical Sensors for Clinic Analysis, Sensors, 8 (2008) 2043-2081.
  32. R. Ansari, Review Article Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies, E-Journal of Chemistry 3 (2006) 186-201.



Article Details

Volume 4, Issue 5, Year 2022

Published 2022-08-01


Download data is not yet available.

Plum Analytics