Materials based on cerium oxide, stabilized by oxides of rare earth elements, are promising for use in medicine, energy and mechanical engineering due to the uniqueness of their properties. State diagrams of CeO2–La2O3–Ln2O3 systems are the physicochemical basis for the creation of solid electrolytes for fuel cells, oxygen gas sensors, catalyst carriers, protective coatings on alloys, etc. Phase equilibria and structural transformations in CeO2–La2O3–Gd2O3 systems at temperatures  1250 and 1500 °С and in the binary system La2O3–Gd2O3 at temperatures  1100, 1500 and 1600 ° С in the whole range of concentrations were investigated using X-ray phase and microstructural analyzes. It was found that solid solutions based on cubic (F) modification with CeO2 fluorite type, monoclinic (B) and cubic (C) modifications of Gd2O3 and hexagonal (A) modification of La2O3 are formed in the ternary system CeO2–La2O3–Gd2O3. The boundaries of the phase fields and the periods of the crystal lattices of the formed phases are determined. It is established that in the CeO2–La2O3 –Gd2O3 system at 1250 and 1500 °С the phases of cubic symmetry are in equilibrium: on the basis of F–CeО2 with the spatial group Fm3m and C-phase on the basis of Gd2O3 with the spatial group Ia3. As the temperature decreases, there is a narrowing of all areas of homogeneity.


Lanthanum and gadolinia, Cerium oxides, Phase equilibrium, Solid solutions, Functional and structural ceramics,


Download data is not yet available.


  1. A. Senthil Kumar, R. Balaji, S. Jayakumar, Effect of Dopant on Improving Structural, Density and Functional Properties of Ceria Based SOFC Electrolyte, International Journal of Nanoscience and Nanotechnology–15 (1) (2019) 37-44.
  2. R. Schmitt, A. Nenning, O. Kraynis, R. Korobko, A.I. Frenkel, I. Lubomirsky, S.M. Hailef, J.L.M. Rupp, A review of defect structure and chemistry in ceria and its solid solutions, Chemical Society Reviews, 49 (2020) 554-592.
  3. M. Bellardita, R. Fiorenza, L. Palmisano, S. Scirè, Photocatalytic and photothermocatalytic applications of cerium oxide-based materials, Cerium Oxide (CeO2): Synthesis, Properties and Applications (2020) P. 109-167.
  4. Tiziano Montini, Michele Melchionna, Matteo Monai, and Paolo Fornasiero, Fundamentals and Catalytic Applications of CeO2-Based Materials, Chemical Reviews,116 (2016) 5987–6041.
  5. M. Foex, F. Sibieude, A. Rouanet, D. Hernandez, Crystal-chemical effect of splat-cooling on a 30 mol % CeO2 70 mol % La2O3 mixed oxide, Journal of Materials Science, 10 (1975) 1255–1257.
  6. G. Brauer, H. Gradinger, Über heterotype Mischphasen bei Seltenerdoxyden, Zeitschrift für anorganische und allgemeine Chemie, 276 (1954) 209–226.
  7. G. Bacquet, C. Bouysset, and D. Hernandez, E.S.R. of Gd3+ in La2O3 and its solid solutions with CeO2, Journal de Physique Colloques, 37 (12) (1976) 204–207.
  8. D.J.M. Bevan and A.W. Mann, The crystal structure of Y7O6F9, Acta Crystallographic B, 31 (1975) 1406–1411.
  9. N. Minkova and S. Aslanian, Isomorphic substitutions in the CeO2–La2O3 system at 850 °C, Crystal Research Technology, 24 (1989) P. 351–354.
  10. B.J. Sung, C.W. Kil, L.C. Hee, The crystal structure of ionic conductor LaxCe1–xO2–x/2, Journal of the European Ceramic Society, 24 (2004) 1291–1294.
  11. B.C. Morris, W.R. Flavell, W.C. Mackrodt, and M.A. Morris, Lattice parameter changes in the mixed oxide system LaxCe1–xO2–-x/2 – a combined experimental and theoretical study, Journal of Materials Chemistry, 3 (10) (1993) 1007.
  12. F. Sibieude, G. Schiffmacher, and P. Caro, Étude au microscope électronique de structures modulées dans les régions systéme La2O3–CeO2 riches en La2O3, Journal of Solid State Chemistry, 23 (3-4) (1978) 361–367.
  13. E.R. Andrievskaya, O.A. Kornienko, A.V. Sameljuk, A. Sayir, Phase relation studies in the CeO2–La2O3 system at 1100 to 1500 °С, Journal of the European Ceramic Society, 31 (7) (2011) 1277–1283.
  14. O.A. Kornienko, Interaction and properties of phases in the CeO2-Gd2O3 system at 1500 °C, Bulletin of NTU "KhPI" 45 (2009) 86-90.
  15. P.A. Žguns, A.V. Ruban, N.V. Skorodumova, Phase diagram and oxygen–vacancy ordering in the CeO2–Gd2O3 system: a theoretical study, Physical Chemistry Chemical Physics, 20 (2018) 11805-11818.
  16. O.A. Kornienko, Interaction and properties of phases in the CeO2-Gd2O3 system at 1100 °C, Bulletin of NTU "KhPI" 66 (2010) 14-18.
  17. V. Grover, A.K. Tayagi, Phase Relations, Lattice Thermal Expansion in CeO2–Gd2O3 System and Stabilization of Cubic Gadolinia, Materials Research Bulletin 39 (6) (2004) 859-866.
  18. A. Kossoy, Q. Wang, R. Korobko, V. Grover, Y. Feldman, E. Wachtel, A. K. Tyagi, A. I. Frenkel, and I. Lubomirsky, Evolution of the local structure at the phase transition in CeO2-Gd2O3 solid solutions, Physical Review B, 87(5) (2013) 054101.
  19. O.A. Kornienko, Interaction and properties of phases in the CeO2–Gd2O3 system at 600 °C, Bulletin of NTU "KhPI" 51 (2012) P. 50-54.
  20. R. Horyn, A. Sikora, E. Bukowska, Phase Relations in Gd2O3–CeO2–CuO System at 980±C, Acta Physica Polonica A 106 (2004) 727-731.
  21. E.R. Andrievskaya, Phase Equilibria in the systems of Hafnia, Yttria with rare-earth Oxides. Scientific book Project, Kiev, Naukova Dumka, 2010, 470 p.
  22. S.A. Toropov, State diagrams of refractory oxide systems. - L.: Nauka, 1987, pp. 822. (in Russian).
  23. M. Zinkevich, Thermodynamics of earth sesquioxedes, Progress in Materials in Science 52 (2007) P. 597- 647.
  24. Yumin Zhang Thermodynamic Thermodynamic Properties of Rare Earth Sesquioxide, Supervisor: Prof In-ho Jung McGill University, Montreal, QC, Canada, Montreal – 2016.
  25. J.P. Coutures and M. Foex, Etude a Haute TempCrature des Systsmes Formes par le Sesquioxyde de Lanthane et les Sesquioxydes de Lanthanides . I . Diagrammes de Phases (1400 °C < T < TLiquide), Journal of Solid State Chemistry, 182 (17) (1976) 171-182.
  26. R. Hory´n, E. Bukowska, A. Sikora, Phase relations in La2O3–Gd2O3–CuO system at 950 °C, Journal of Alloys and Compounds, 416 (2006) 209–213.
  27. S.J. Schneider and R.S. Roth, Phase Equilibria in Systems Involving the Rare-Earth Oxides. Part II. Solid State Reactions in Trivalent Rare-Earth Oxide Systems, Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, 64A (4) 1960.
  28. О.Р. Andrievska, O.A. Kornienko, O.I. Bykov Interaction of lanthanum and gadolinium oxides at a temperature of 1100 оС, Modern problems of physical materials science, IPM NAS of Ukraine 26 (2017) P 23–30.
  29. M. Stopyra, I. Saenko, I. Latovskaia, G. Savinykh, O. Fabrichnaya, Phase relations in the ZrO2–La2O3–Gd2O3 system: experimental studies and phase modeling, Journal American Ceramic Society 102 (2019) 7628-7644.
  30. E.R. Andrievskaya, O.A. Kornienko, A.I. Bykov, Phase equilibria in the ZrO2–La2O3–Gd2O3 system at 1600°C, Powder Metallurgy and Metal Ceramics 58 (11–12) (2020) 714–724.
  31. O. Kornienko, O. Bykov, А. Sameliuk, O. Andrievskaya, Isotermal section structure the ZrO2-La2O3-Gd2O3 system at 1500 °С, Ukrainian Chemistry Journal 87 (1) (2021) 23-40.
  32. О.R. Аndrievskaya, O.A. Kornienko, О.І. Bykov, O.V. Chudinovich, L.N. Spasonova, Isothermal section for the system CeO2-Lа2O3-Eu2O3 at 1500°C, Processing and Application of Ceramics 15 (1) (2021) 32–39.
  33. O.A. Korniienko, E.R. Angrievskaya, O.I. Bykov, V.S. Urbanovich, S.V. Yushkevych, L.S. Spasonova, Interaction of cerium, lanthanum and samarium oxides at 1250 °C, Powder Metallurgy and Metal Ceramics, 63 (2021) 342–349.
  34. O. Kornienko, O. Bykov, А. Sameliuk, Y. Yurchenko, Phase relation studies in the CeO2-La2O3-Eu2O3 System at 1250 °С, Ukrainian Chemistry Journal 86 (3) (2020) 35-47.
  35. O.A. Kornienko, A.V. Sameljuk, О.І. Bykov, V. Yurchenko Yu., A.K. Barshchevskaya, Phase Relation Studies in theCeO2–La2O3–Er2O3 System at 1500°C, Journal of the European Ceramic Society, 40 (2020) 4184-4190.