Effect of SILAR Cycles on the Thickness, Structural, Optical Properties of Cobalt Selenide Thin Films

Egwunyenga N.J
Department of Science Laboratory Technology, Delta State polytechnic, Ogwashi – uku, Delta State, Nigeria.
Onuabuchi V.C
Department of Physics, Legacy University, Okija, Anambra State, Nigeria.
Okoli N.L
Department of Science Education, Enugu State University of Science and Technology, Enugu State, Nigeria.
Nwankwo I.E
Department of Science Laboratory Technology, Federal Polytechnic Oko, Anambra State, Nigeria.


Plum Analytics


Cobalt Selenide thin films were fabricated using Successive Ionic Layer Adsorption and Reaction (SILAR) deposition technique at different SILAR cycles. The precursors for Cobalt and Selenium ions were CoCl2.6H2O and Na2SeSO3 respectively. Optical properties and thickness of the deposited films were studied to determine the effect of number of SILAR cycles on these properties. The optical absorbance of the films was found to decrease as wavelength increases and increases as SILAR cycle increases. Transmittance of the CoSe thin films was found to increase as the wavelength increases but decreases as number of SILAR cycles increased. The extinction coefficient of CoSe thin films decreases as wavelength increases but increases as the SILAR cycles increases. The energy band gap of CoSe thin films deposited decreases from 2.47 eV to 2.20 eV as number of SILAR cycles increases and film thickness increases from 92.96 nm and 225.63 nm. Structural properties of deposited cobalt selenide thin films showed that they correspond to orthorhombic phase of CoSe2 crystal structure of cobalt selenide thin films with crystallite size ranging from 7.63 nm to 13.07 nm.


  • Cobalt selenide,
  • Thin Films,
  • SILAR method,
  • Optical Properties,
  • XRD


  1. P.E. Agbo, P.A. Nwofe, R.A. Chikwenze, and D.A. Famuyibo, Effect of pH on Properties of CoSe Thin Films Deposited by Chemical Bath Technique, African Journal of Basic & Applied Sciences, 8 (3): (2016) 152 – 156.
  2. A.M. Kwiecińska, D. Kutyła, K. Kołczyk-Siedlecka, K. Skibińska, P. Żabiński, and R. Kowalik, Electrochemical analysis of co-deposition cobalt and selenium, Journal of Electroanalytical Chemistry, 848, (2019), (113278).
  3. P.E. Agbo, and M.N. Nnabuch, Effect of Annealing on the thickness and Bandgap of novel crystalline thin Film, Journal of Ovonic Research, 8: (2012) 127-133.
  4. P.A. Nwofe, K.T.R. Reddy, R.W. Miles, Influence of Deposition Time on the Properties of Highly-Oriented SnS Thin Films Prepared Using the Thermal Evaporation Method, Advance Material Research, 602-604 (2013) 1409-1412.
  5. R.A. Chikwenze, J.I. Uba, and J.U. Arikpo, Optical and Electrical Properties of Chemical Bath Deposited Cobalt Selenide Thin Film, Chalcogenide Letters, 14(6), (2017) 211 – 216.
  6. Z. Zhang, S. Pang, H. Xu, Z. Yang, X. Zhang Z. Liu and L. Gu. Electrodeposition of nanostructured cobalt selenide films towards high-performance counter electrodes in dye-sensitized solar cells, RSC Advances, 3(37): (2013) 16528 – 16533.
  7. H. Luo, D. Wang, J. He, and Y. Lu, Magnetic cobalt nanowire thin films. The Journal of Physical Chemistry B, 109(5): (2005), 1919-1922.
  8. J. Gao, B. Zhang, X. Zhang, and B. Xu, Magnetic‐Dipolar‐Interaction‐Induced Self‐Assembly Affords Wires of Hollow Nanocrystals of Cobalt Selenide. Angewandte Chemie, 118(8): (2006) 1242-1245.
  9. X. Zhang, J. Gong, K. Zhang, W. Zhu, J. Li, and Q. Ding, All-solid-state asymmetric supercapacitor based on porous cobalt selenide thin films, Journal of Alloys and Compounds, 772, (2018) 25 – 32.
  10. J. Masud, A.T. Swesi, W.P.R. Liyanage, and M. Nath, Cobalt Selenide Nanostructures: An Efficient Bifunctional Catalyst with High Current Density at Low Coverage, Applied Materials and Interfaces, 8, 27, (2016) 17292-17302.
  11. C. Dai, X. Tian, Y. Nie, C. Tian, C. Yang, Z. Zhou, Y. Li, and X. Gao, Successful Synthesis of 3D CoSe2 Hollow Microspheres with High Surface Roughness and Its Excellent Performance in Catalytic Hydrogen Evolution Reaction, Chemical Engineering Journal, 321, (2017) 105 – 112.
  12. M. Wang, Z. Dang, M. Prato, U. Petralanda, I. Infante, D.V. Shinde, L. De Trizio, and L. Manna, Ruthenium-Decorated Cobalt Selenide Nanocrystals for Hydrogen Evolution, Applied Nano Materials, 2(9), (2019) 5695 – 5703.
  13. G. Zhang, S. Zang, Z. Lan, C. Huang, G. Li, and X. Wang, Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light, Journal of Materials Chemistry A, 35, 3, (2015) 17946 - 17950.
  14. H. Jee, K. Paeng, N. Myung, and K. Rajeshwar, Compositional Analysis of Electrodeposited Cobalt Selenide Thin Films Using Continuous Flow Electrochemical Quartz Crystal Microgravimetry. Journal of the Electrochemical Society, 165(9), (2018) D370 - D374.
  15. R.A. Chikwenze, P.A. Nwofe, P.E. Agbo, and H.U. Igwe, pH Induced Optical Constant Variation of Chemically Deposited CoSe Thin Films. Advances in Natural and Applied Sciences, 9(16) (2015) 36 – 40.
  16. M.L. Gaur, P.P. Hankare, I.S. Mulla, F.M. Dange, and V.M. Bhuse Morphological and optical properties of mixed cadmium cobalt selenide thin film synthesized by chemical bath deposition method for photoelectrochemical applications. Journal of Material Science, Materials in Electronics, 27(7), (2016) 7603 – 7608.
  17. K. Ravindranah, K.D.V. Prasad, and M.C. Rao, Spectroscopic and Luminescent Properties of Co2+ doped tin oxide thin film by Spray Pyrolysis. Aims Material Science, 3(3): (2016), 796 – 807.
  18. C.C. Okorieimoh, U. Chime, A.C. Nkele, A.C. Nwanya, I.G. Madiba, A.K.H. Bashir, S. Botha, P.U. Asogwa, M. Maaza, and F.I. Ezema, Room-temperature synthesis and optical properties of nanostructured Ba-Doped ZnO thin films. Superlattices and Microstructures, 130, (2019) 321 – 331.
  19. L.N. Ezenwaka, N.S. Umeokwonna, N.L. Okoli, Optical, structural, morphological, and compositional properties of cobalt doped tin oxide (CTO) thin films deposited by modified chemical bath method in alkaline medium, Ceramics International, 46(5), (2020) 6318-6325. [DOI]
  20. C. Awada, G.M. Whyte, P.O. Offor, F. U.Whyte, M.B. Kanoun, S. Goumri-Said, A. Alshoaibi, A.B.C. Ekwealor, M. Maaza, and F.I. Ezema, Synthesis and Studies of Electrodeposited Yttrium Arsenic Selenide Nanofilms for Opto-Electonic Applications. Nanomaterials, 10(8), (2020) 1557.
  21. X. Chen, J. Ding, Y. Li, Y. Wu, G. Zhuang, C. Zhang, Z. Zhang, C. Zhu, and P. Yang, Size-controllable synthesis of NiCoSe2 microspheres as a counter electrode for dye-sensitized solar cells. RSC Advances, 8(46), (2018) 26047 – 26055.
  22. X. Zhao, X. Li, Y. Yan, Y. Xing, S. Lu, L. Zhao, S. Zhou, Z. Peng, and J. Zeng, Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution. Applied Catalysis B: Environmental, 236, (2018) 569–575.
  23. A. Ali, and W-C. Oh, Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance. Journal of the Korean Ceramic Society, 54(3), (2017) 205-210.
  24. A.C. Nwanya, D. Obi, R.U. Osuji, R. Bucher, M. Maaza, and F.I. Ezema, (2017). Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications. Journal of Solid State Electrochemistry, 21(9), (2017) 2567 – 2576.
  25. M.R. Belkhedkar, A.U. Ubale, Y.S. Sakhare, N. Zubair, and M. Musaddique, Characterization and antibacterial activity of nanocrystalline Mn doped Fe2O3 thin films grown by successive ionic layer adsorption and reaction method. Journal of the Association of Arab Universities for Basic and Applied Sciences, 21(1), (2016) 38–44.
  26. C. Sun, H. Zhao, Y. Shi, Y. Chen, Y. Wu, L. Wang, and B. Guo, Preparation and growth mechanism of solidified TiO2 film on polyimide by SILAR at room temperature. AIP Advances, 9(3), (2019) 035337.
  27. H.D. Shelke, A.C. Lokhande, V.S. Raut, A.M. Patil, J.H. Kim, and C.D. Lokhande, Facile synthesis of Cu2SnS3 thin films grown by SILAR method: effect of film thickness. Journal of Materials Science: Materials in Electronics, 28(11), (2017) 7912–7921.
  28. Y. Akaltun, A. Astam, A. Cerhan, and T. Çayir, Effect of thickness on electrical properties of SILAR deposited SnS thin films. AIP Conference Proceedings, 1722(220001), (2016) 1 – 4.
  29. K.B. Chaudhari, N.M. Gosavi, N.G. Deshpande, and S.R. Gosavi, Chemical synthesis and characterization of CdSe thin films deposited by SILAR technique for optoelectronic applications. Journal of Science: Advanced Materials and Devices, 1(4), (2016) 476–481.
  30. N.J. Egwunyenga, N.L. Ezenwaka, I.A. Ezenwa, and N.L. Okoli, Effect of annealing temperature on the optical properties of electrodeposited ZnO/MgO superlattice, Materials Research Express, 6(10), (2019) 105921(1-9).
  31. C. Guo, and M. Kong, Fabrication of Ultralow Stress TiO2 /SnO2 Optical Coating by Palsma Ion Assisted Deposition. Coatings, 10, (2020) 720 (1 - 13).
  32. Q.M. Al-Bataineh, A.M. Alsaad, A.A. Ahmad, and A. Telfah, A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin films doped with silica nanoparticles, Heliyon, 6(6), (2020) e04177.
  33. R.Y. Petrus, H.A. Ilchuk, A.I. Kashuba, I.V. Semkiv, E.O. Zmiiovska, and F.M. Honchar, Optical Properties of CdS Thin Films, Journal of Applied Spectrocopy, 87(1) (2020) 35 – 40.
  34. M.I. El – Radaf, Structural, Optoelectrical, Linear and Non – linear Optical Characterizations of Cu2ZnGeSe4 Thin Films, Journal of Materials Science: Materials in Electronics, 31, (2020) 3228 – 3237.
  35. G.M. Whyte, C. Awada, P.O. Offor, F.U. Whyte, M.B. Kanoun, S. Goumri-Said, A. Alshoaibi, A.B.C. Ekwealor, M. Maaza, and F.I. Ezema, Experimental and Theoretical Studies of the Solid State Performance of Electrodeposited Yb2O3/As2Se3 Nanocomposites Thin Films, Journal of Alloys and Compounds, 855(1), (2020), 15734.
  36. M.H. Shine, S.A.A. Al – Saati, and F.Z. Razooqi, Preparation of high transmittance TiO2 thin films by sol-gel technique as antireflection coating, Journal of Physics: Conference series, 1032(012018), (2018) 1 – 12.
  37. T.A. Hameed, A.R. Wassel, and I.M.l. El-Radaf, Investigating the effect of thickness on the structural, morphological, optical and electrical properties of AgBiSe2 thin films, Journal of Alloys and Compounds, 805 (2019) 1–11.
  38. A.M. Alsaad, A.A. Ahmad, I.A. Qattan, Q.M. Al-Bataineh, and Z. Albataineh, Structural, Optoelectrical, Linear, and Nonlinear Optical Characterizations of Dip-Synthesized Undoped ZnO and Group III Elements (B, Al, Ga, and In)-Doped ZnO Thin Films, Crystals, 10(252) (2020) 1 – 17.
  39. I.M. El Radaf, H.Y.S. Al-Zahrani, and A.S. Hassanien, Novel synthesis, structural, linear and nonlinear optical properties of p-type kesterite nanosized Cu2MnGeS4 thin films, Journal of Materials Science: Materials in Electronics, 31, (2020) 8336–8348.
  40. N. Ghobadi and F. Khazaie, Fundamental role of the pH on the nanoparticle size and optical band gap in cobalt selenide nanostructure films, Optical and Quantum Electronics, 48(165), (2016) 1 – 8.
  41. N. Ghobadi, F. Hafezi, S. Naderi, F. Amiri, C. Luna, A. Arman, R. Shakoury, S. Ţălu, S. Rezaee, M. Habibi, and M. Mardani, Microstructure and Optical Bandgap of Cobalt Selenide Nanofilms. Semiconductors, 53(13) (2019) 1751–1758.
  42. T.M. Emeakaroha, B.A. Ezekoye, V.A. Ezekoye, K.O. Ighodalo, Optical and Structural Properties of Silar-Grown Highly oriented Lead Sulphide (PbS) Thin Films, Chalcogenide Letters, 13(3) (2016) 91 -96.



Article Details

Volume 3, Issue 4, Year 2021

Published 2021-06-08


Download data is not yet available.

Plum Analytics