Abstract

Monazite is a phosphate mineral, considered an essential source of light rare-earth elements (REE). The present work sought to evaluate different methods of solubilization of REE through the use of different concentrations of inorganic acids (H2SO4, HCl, and HNO3) and organic acids (citric, oxalic, and lactic) in mild conditions at room temperature. According to the results, the inorganic acid solutions favored the solubilization in order of Ce3+, La3+, Nd3+, Pr3+, and Sm3+ elements, while organic acid solutions only favored the solubilization of Ce3+ and La3+. Nitric acid was the more efficient leaching agent for the first group. In the case of organic acids, lactic acid solubilized Ce3+, while mixtures of lactic and citric acids appeared to solubilize La3+.

Keywords

Monazite, Rare-Earth elements, Chemical leaching, Design of Experiments,

Downloads

Download data is not yet available.

References

  1. C.K. Gupta, & N. Krishnamurthy, Extractive metallurgy of rare earths. International Material Reviews, 37 (1992) 197-248. https://doi.org/10.1179/imr.1992.37.1.197
  2. A.C.S.P. Souza, M. Nascimento, E.C. Giese, Desafios para a extração sustentável de minérios portadores de terras raras, Holos, 1 (2019) 1-9. https://doi.org/10.15628/holos.2019.8274
  3. J.H.L. Voncken, (2016) The ore minerals and major ore deposits of the Rare Earths. In: Voncken, J.H.L. (Ed) The Rare Earth Elements. Springer, Singapore.
  4. K. Kwanho, J. Soobok, Separation of monazite from placer deposit by magnetic separation, Minerals, 9 (2019) 149-160, https://doi.org/10.3390/min9030149
  5. F. Sadri, F. Rashchi, & A. Amini, Hydrometallurgical digestion and leaching of Iranian monazite concentrate containing rare earth elements Th, Ce, La and Nd, International Journal of Mineral Processing, 159 (2017) 7-15. https://doi.org/10.1016/j.minpro.2016.12.003
  6. E. Kim, & K. Osseo-Asare, Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh-pH diagrams for the systems Th-, Ce-, La-, Nd- (PO4)-(SO4)-H2O at 25°C, Hydrometallurgy, 113-114 (2012) 67-78. https://doi.org/10.1016/j.hydromet.2011.12.007
  7. R. Panda, A. Kumari, M.K. Jha, J. Hait, V. Kumar, J. Rajesh Kumar, & J.Y. Lee, Leaching of rare earth metals (REMs) from Korean monazite concentrate, Journal of Industrial and Engineering Chemistry, 20 (2014) 2035-2042. https://doi.org/10.1016/j.jiec.2013.09.028
  8. L. Zhang, H. Dong, L. Yan, L. Bian, X. Wang, Z. Zhou, & Y. Huang, Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria, Chemical Geology, 483 (2018) 544-557. https://doi.org/10.1016/j.chemgeo.2018.03.023
  9. N.V. Coimbra, M. Nascimento, & E.C. Giese, Avaliação do uso de biomassa bacteriana imobilizada na biossorção de terras-raras leves e médias, Holos, 6 (2017) 136-146. https://doi.org/10.15628/holos.2017.6445
  10. G.P. Heidelmann, T.M. Roldão, S.G. Egler, M. Nascimento, & E.C. Giese, Uso de biomassa de microalga para biossorção de lantanídeos, Holos, 6 (2017) 170-179. https://doi.org/0.15628/holos.2017.6436
  11. E.C. Giese, A.M. Barbosa-Dekker, & R.F.H. Dekker, Biosorption of lanthanum and samarium by viable and autoclaved mycelium of Botryosphaeria rhodina MAMB-05, Biotechnology Progress, (2019) e2783. https://doi.org/10.1002/btpr.2783
  12. E.C. Giese, & C.S. Jordão, Biosorption of lanthanum and samarium by chemically modified Bacillus subtilis free cells, Applied Water Science, 9 (2019) 182. https://doi.org/10.1007/s13201-019-1052-3
  13. E.C. Giese, Biosorption as a green technology for the recovery and separation of rare earth elements, World Journal of Microbiology and Biotechnology, 36 (2020) 52. https://doi.org/10.1007/s11274-020-02821-6
  14. H. Fathollahzadeh, T. Becker, J.J. Eksteen, A.H. Kaksonen, & E.L.J. Watkin, Microbial contact enhances the bioleaching of rare earth elements, Bioresource Technology Reports, 3 (2018) 102-108. https://doi.org/10.1016/j.biteb.2018.07.004
  15. E.C. Giese, Biolixiviação: Uma avaliação das inovações tecnológicas na biomineração de minerais sulfetados no período de 1991 a 2015, Tecnologia em Metalurgia, Materiais e Mineração, 14 (2017) 192-203. http://dx.doi.org/10.4322/2176-1523.1205
  16. V.L. Brisson, & W.-Q. Zhuang, & L. Alvarez-Cohen, Bioleaching of rare earth elements from monazite sand, Biotechnology and Bioengineering, 113 (2015) 339-348. https://doi.org/10.1002/bit.25823
  17. Y. Qu, & B. Lian, Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresource Technology, 136, (2013) 16-23. https://doi.org/10.1016/j.biortech.2013.03.070
  18. T. Qiu, H. Yan, J. Li, Q. Liu, & G. Ai, Response surface method for optimization of leaching of a low-grade ionic rare earth ore. Powder Technology, 330 (2018) 330-338. https://doi.org/10.1016/j.powtec.2018.02.044
  19. A. Kumari, R. Panda, M. Kumar Jha, R. Kumar, J.Y. Lee, Process development to recover rare earth metals from monazite mineral: A review, Minerals Engineering, 79 (2015) 102-115. http://dx.doi.org/10.1016/j.mineng.2015.05.003
  20. F.T. Bunus, & R. Dumitrescu, Simultaneous extraction of rare earth elements and uranium from phosphoric acid, Hydrometallurgy, 28 (1992) 331-338. https://doi.org/10.1016/0304-386X(92)90038-2
  21. V.I. Kuzmin, G.L. Pashkov, V.G. Lomaev, E.N. Voskresenskaya & V.N. Kuzmina, Combined approaches for comprehensive processing of rare earth metal ores, Hydrometallurgy, 129-130 (2012). 1-6. https://doi.org/10.1016/j.hydromet.2012.06.011
  22. C.P. Faizul, C. Abdullah, & B. Fazlul, Review of extraction of silica from agricultural wastes using acid leaching treatment, Advanced Materials Research, 626 (2012) 997-1000. https://doi.org/10.4028/www.scientific.net/AMR.626.997
  23. G. Furrer, & W. Stumm, The role of surface coordination in the dissolution of δ-Al2O3 in dilute acids, Chimia, 37 (1983) 338-341.
  24. D.E. Lazo, L.G. Dyer, R.D. Alorro & R. Browner, Treatment of monazite by organic acids I: Solution conversion of rare earths, Hydrometallurgy, 174 (2017) 202-209. https://doi.org/10.1016/j.hydromet.2017.10.003
  25. D.E. Lazo, L.G. Dyer, R.D. Alorro & R. Browner, Treatment of monazite by organic acids II: Rare earth dissolution and recovery, Hydrometallurgy, 179 (2018) 94-99. https://doi.org/10.1016/j.hydromet.2018.05.022
  26. D.E. Lazo, L.G. Dyer, R.D. Alorro & R. Browner, Observations of the varied reactivity of xenotime and monazite in multiple systems, Minerals Engineering, 159 (2020) 106633. https://doi.org/10.1016/j.mineng.2020.106633