Abstract
The increasing dependence on non-renewable resources for energy storage has accelerated the development of supercapacitor technology, which is now essential to portable devices and electric cars because of its high-power density and quick charge/discharge speed. Optimized geometry, weak C-H‧‧‧O hydrogen bonding interactions inside methylene groups affect bond lengths, and the carboxylic group in adipic acid (ADPI) shortens bond lengths (C14–C15 and C4–C5). DFT simulations demonstrate a fair agreement to experimental data. According to vibrational studies, the O-H and C=O groups' vibrational frequencies are greatly influenced by the reactive hydrogen bonding displayed by the -COOH group in carboxylic acid derivatives. With theoretical values demonstrating significant PED contributions, these interactions reduce the O-H stretching frequency, which is seen as an O-H stretching band at 3405 cm⁻¹ in the FT-IR spectra. In ADPI, atoms interact with neighboring atoms' σ* orbitals (O2-C4), (O12-C14), (C4-C5), (C14-C15), (O1-C4), and (O11-C14) through lone pairs of electrons localized on O1 (LP2), O11 (LP2), O2 (LP1), and O12 (LP1); these interactions have fairly high stabilization values of 33.78, 33.78, 17.91, 17.91, 6.75, and 6.75 kcal/mol, accordingly. Redox peaks and increased specific capacitance with scan rate are revealed by cyclic voltammetry study of ADPI, suggesting efficient electron transport, improved charge storage, and encouraging prospects for electrochemical energy storage applications. ADPI's appropriateness for high-performance electrochemical applications such as supercapacitors is supported by its impedance analysis, which is displayed by a Nyquist plot with a decreased semicircle and a sharp low-frequency slope. This plot demonstrates effective electron transfer, ion diffusion, and capacitive behavior.
Keywords
CV, Impedence, DFT, Adipic Acid, Non-Covalent, Supercapacitor Technology, FMO,Downloads
References
- H. Li, Y. Yu, T. Wang, Y. Zhang, J. You, F. Hu, K. Zhu, Zinc-ion hybrid capacitors: Electrode material design and electrochemical storage mechanism. Journal of Power Sources, 610, (2024) 234638. https://doi.org/10.1016/j.jpowsour.2024.234638
- X. Xia, X. Zhang, S. Yi, H. Chen, H. Liu, Supercapacitance properties of porous carbon from chemical blending of phenolic resin and aliphatic dicarboxylic acids. Journal of Materials Research, 31, (2016) 1665–1673. https://doi.org/10.1557/jmr.2016.183
- M. Pershaanaa, S. Bashir, S. Ramesh, K. Ramesh, Every bite of Supercap: A brief review on construction and enhancement of supercapacitor. Journal of Energy Storage, 50, (2022) 104599. https://doi.org/10.1016/j.est.2022.104599
- T. Chen, L. Dai,s Carbon nanomaterials for high-performance supercapacitors. Materials Today, 16(7), (2013) 272–280. https://doi.org/10.1016/j.mattod.2013.07.002
- Y. Wen, X. Wang, H. Wei, B. Li, P. Jin, L. Li, A large-scale continuous-flow process for the production of adipic acid via catalytic oxidation of cyclohexene with H2O2. Green Chemistry, 14, (2012) 2868. https://doi.org/10.1039/C2GC35677E
- S. Van De Vyver, Y. Román-Leshkov, Emerging catalytic processes for the production of adipic acid. Catalysis Science & Technology, 3, (2013) 1465–1479. https://doi.org/10.1039/C3CY20728E
- L. Adili, L. Roufegarinejad, M. Tabibiazar, H. Hamishehkar, A. Alizadeh, Development and characterization of reinforced ethyl cellulose based oleogel with adipic acid: Its application in cake and beef burger. LWT, 126, (2020) 109277. https://doi.org/10.1016/j.lwt.2020.109277
- K. Vibha, S. Negi, Enzymatic plasticising of lignin and styrene with adipic acid to synthesize a biopolymer with high antioxidant and thermostability. Polymer Degradation and Stability, 174, (2020) 109081. https://doi.org/10.1016/j.polymdegradstab.2020.109081
- G. Lesage, I. Quesada Peñate, P. Cognet, M. Poux, Green Process for Adipic Acid Synthesis: Oxidation by Hydrogen Peroxide in Water Micromelusions using Benzalkonium Chloride C12-14 Surfactant. International Journal of Chemical Reactor Engineering, 10(1), (2012). https://doi.org/10.1515/1542-6580.2955
- J. Alcañiz-Monge, G. Trautwein, A. Garcia-Garcia, Influence of peroxometallic intermediaries present on polyoxometalates nanoparticles surface on the adipic acid synthesis. Journal of Molecular Catalysis A: Chemical, 394, (2014) 211–216. https://doi.org/10.1016/j.molcata.2014.07.023
- S.T. Gunday, E. Cevik, A. Yusuf, A. Bozkurt, Nanocomposites composed of sulfonated polysulfone/hexagonal boron nitride/ionic liquid for supercapacitor applications. Journal of Energy Storage, 21, (2019) 672–679. https://doi.org/10.1016/j.est.2019.01.008
- L. Boonen, P. Kitzler, J. Kasum, Processing of aqueous polymer electrolytes for supercapacitors via different industrial application methods. Progress in Organic Coatings, 115, (2018) 107–114. https://doi.org/10.1016/j.porgcoat.2017.10.006
- A. Mazzi, S. Paul, F. Cavani, R. Wojcieszak, Cyclohexane Oxidation to Adipic Acid Under Green Conditions: A Scalable and Sustainable Process. Chemical Catalysis Chemistry, 10(17), (2018) 3680–3682. https://doi.org/10.1002/cctc.201800419
- S. Bibi, E. Pervaiz, M. Yang, O. Rabi, Mof embedded and cu doped ceo2 nanostructures as efficient catalyst for adipic acid production: Green catalysis. Catalysts, 11(3), (2021) 304. https://doi.org/10.3390/catal11030304
- S. Rajkumar, S. Dhineshkumar, N. Arunprakash, P. Raychel, S. Anantha kumar, J.P. Merlin, Fabrication of SrWO4/PPy composite as electrode material for high-performance supercapacitors. Optical Materials, 142, (2023) 113934. https://doi.org/10.1016/j.optmat.2023.113934
- A.A.J. Ranchani, V.S.J. Reeda, P. Divya, R. Suja, V.B. Jothy, Leveraging the properties of pyridine derivatives using DFT analysis to achieve breakthroughs in supercapacitance advancements. Ionics, 30, (2024) 6451–6473. https://doi.org/10.1007/s11581-024-05736-6
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyot, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (2010) Gaussian 09, Revision B.01. Gaussian Inc., Wallingford.
- M.H. Jamróz, Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, (2013) 220-230. https://doi.org/10.1016/j.saa.2013.05.096
- K.R. Dennington, T.A. Keith, J.M. Millam, Semichem, Inc, Shawnee mission, Gaussview, 2019.
- T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), (2012) 580–592. https://doi.org/10.1002/jcc.22885
- H. William, VMD-visual molecular dynamics. Journal of molecular graphics, 14, (1996) 33-38. https://doi.org/10.18974/tvrsj.10.2_231
- T. Ben Issa, F. Sayari, H. Ghalla, L. Benhamada, Synthesis, crystal structure, DFT calculations and molecular docking of L-pyroglutamic acid. Journal of Molecular Structure, 1178, (2019) 436–449. https://doi.org/10.1016/j.molstruc.2018.10.033
- N.P. Roeges, J.M.A. Baas, (1994) A guide to the complete interpretation of infrared spectra of organic structures. Wiley, New York.
- P. Divya, V.S. Jeba Reeda, R. Suja, V. Bena Jothy, Structural activity, spectroscopic, Fukui, NCI, AIM, IGM combined with molecular docking and molecular dynamics simulation on 4-methylpyridinium 4-hydroxybenzoate-potent drug anti-leukemia cancer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 306, (2024) 123568. https://doi.org/10.1016/j.saa.2023.123568
- A. Ram Kumar, C. Senthamil Selvi, S. Selvaraj, G.P. Sheeja Mol, P. Jayaprakash, In silico studies on the molecular geometry, FMO, mulliken charges, MESP, ADME and molecular docking prediction of pyrogallol carboxaldehydes as potential anti-tumour agents, Physical Chemistry Research 12 (2) (2024) 305-320, https://doi.org/10.22036/PCR.2023.402835.2359
- P. Divya, V.S.J. Reeda, S. Renuga, C.D. Annapoorani, V.B. Jothy, Vibrational analysis, DFT computations of spectroscopic, non-covalent analysis with molecular docking and dynamic simulation of 2-amino-4, 6-dimethyl pyrimidine benzoic acid. Journal of Molecular Structure, 1318, (2024) 139160. https://doi.org/10.1016/j.molstruc.2024.139160
- G.S. Fasiuddin, F. Liakath Ali Khan, S. Sakthivel, S. Muthu, A. Irfan, Synthesis, Spectroscopic, Molecular Docking and inhibitory activity of 6-Bromo-2-(4-chlorophenyl)-1H-benzimidazole- a DFT approach. Journal of Molecular Structure, 1261, (2022) 132815. https://doi.org/10.1016/j.molstruc.2022.132815
- V.J. Reeda, S. Sakthivel, P. Divya, S. Javed, V.B. Jothy, Conformational stability, quantum computational (DFT), vibrational, electronic and non-covalent interactions (QTAIM, RDG and IGM) of antibacterial compound N-(1-naphthyl)ethylenediamine dihydrochloride. Journal of Molecular Structure, 1298, (2024) 137043. https://doi.org/10.1016/j.molstruc.2023.137043
- K. Thirunavukkarasu, P. Rajkumar, S. Selvaraj, S. Gunasekaran, S. Kumaresan, Electronic structure, vibrational (FT-IR and FT-Raman), UV–Vis and NMR analysis of 5-(4-(2-(5-ethylpyridin-2-yl) ethoxy) benzyl) thiazolidine-2,4-dione by quantum chemical method. Chemical Data Collections, 17–18, (2018) 263–275. https://doi.org/10.1016/j.cdc.2018.09.006
- P. Divya, V.S. Jeba Reeda, V. Bena Jothy, Fungicide compound 2, 3-dichloronaphthalene-1, 4-dione: Non-covalent interactions (QTAIM, RDG and ELF), combined vibrational spectroscopic investigations using DFT approach with experimental analysis, electronic, molecular docking scrutiny in-vitro assay and thermodynamic property analysis. Journal of Molecular Liquids, 400, (2024) 124544. https://doi.org/10.1016/j.molliq.2024.124544
- A. Savin, The electron localization function (ELF) and its relatives : interpretations and difficulties. Journal of Molecular Structure: Theochem, 727(1-3), (2005) 127–131. https://doi.org/10.1016/j.theochem.2005.02.034
- A. Ram Kumar, S. Selvaraj, G.P. Sheeja Mol, M. Selvaraj, L. Ilavarasan, S.K. Pandey, P. Jayaprakash, S. Awasthi, O. Albormani, A. Ravi, Synthesis, solvent-solute interactions (polar and non-polar), spectroscopic insights, topological aspects, Fukui functions, molecular docking, ADME, and donor-acceptor investigations of 2-(trifluoromethyl)benzimidazole: A promising candidate for antitumor pharmacotherapy. Journal of Molecular Liquids, 393(1), (2024) 123661. https://doi.org/10.1016/j.molliq.2023.123661
- B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 371, (1994) 683–686. https://doi.org/10.1038/371683a0
- V.S. Jeba Reeda, P. Divya, A. Amala Jeya Ranchani, A. Manikandan, S. Alvi, R. Ali, N. Siddiqui, N. Haq, S. Muthu, R. Butcher, S. Javed, Comprehensive analysis of 2,5-dimethyl-1-(naphthalen-1-yl)-1H-pyrrole: X-ray crystal structure, spectral, computational, molecular properties, docking studies, molecular dynamics, and MMPBSA. Journal of Molecular Structure, 1321(3), (2025) 140062. https://doi.org/10.1016/j.molstruc.2024.140062
- V.S. Jeba Reeda, J.N. CheerlinMishma, P. Divya, R. Suja, A. Manikandan, M. Shahid, H. Arora, A. Ali, N. Siddiqui, S. Javed, Structural, Fukui, non-covalent analysis, molecular docking, free energy landscapes, and principle component analysis of biological active 1,8-naphthalic anhydride. Spectroscopy Letters, (2024) 1–21. https://doi.org/10.1080/00387010.2024.2401990
- H. Jacobsen, Localized-orbital locator (LOL) profiles of chemical bonding. Canadian Journal of Chemistry, 86, (2008) 695–702. https://doi.org/10.1139/v08-052
- E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), (2010) 6498–6506. https://doi.org/10.1021/ja100936w
- P.S. Idante, G.C. Apebende, H. Louis, I. Benjamin, U.J. Undiandeye, I.J. Ikot, Spectroscopic, DFT study, and molecular docking investigation of N-(3-methylcyclohexyl)-2-phenylcyclopropane-1-carbohydrazide as a potential antimicrobial drug. Journal of the Indian Chemical Society, 100(2), (2023) 100806. https://doi.org/10.1016/j.jics.2022.100806
- P. Divya, V.S. Jeba Reeda, S. Selvaraj, B. Jothy, Theoretical spectroscopic electronic elucidation with polar and non-polar solvents (IEFPCM model), molecular docking and molecular dynamic studies on bendiocarb -antiallergic drug agent. Journal of Molecular Liquids, 404, (2024) 124895. https://doi.org/10.1016/j.molliq.2024.124895
- S. Armaković, S.J. Armaković, Atomistica. online–web application for generating input files for ORCA molecular modelling package made with the Anvil platform. Molecular Simulation, 49(1), (2023) 117-123. https://doi.org/10.1080/08927022.2022.2126865
- S. Armaković, S.J. Armaković, Online and desktop graphical user interfaces for xtb programme from atomistica. online platform. Molecular Simulation, 50(7-9), (2024) 560-570. https://doi.org/10.1080/08927022.2024.2329736
- T.K. Kuruvilla, S. Muthu, J.C. Prasana, J. George, S. Sevvanthi, Spectroscopic (FT-IR, FT-Raman), quantum mechanical and docking studies on methyl[(3S)-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl]amine. Journal of Molecular Structure, 1175(5), (2019) 163–174. https://doi.org/10.1016/j.molstruc.2018.07.097
- A. Ram Kumar, S. Selvaraj, M. Azam, G. Sheeja Mol, N. Kanagathara, M. Alam, P. Jayaprakash, Spectroscopic, Biological, and Topological Insights on Lemonol as a Potential Anticancer Agent. ACS Omega, 8, (2023) 31548–31566. https://doi.org/10.1021/acsomega.3c04922
- S.K. Pathak, R. Srivastava, A.K. Sachan, O. Prasad, L. Sinha, A.M. Asiri, M. Karabacak, Experimental (FT-IR, FT-Raman, UV and NMR) and quantum chemical studies on molecular structure, spectroscopic analysis, NLO, NBO and reactivity descriptors of 3,5-Difluoroaniline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, (2015) 283–295. https://doi.org/10.1016/j.saa.2014.06.149
- C. Karnan, A. Ram Kumar, S. Selvaraj, Quantum Chemical Computational Studies on the Structural Aspects, Spectroscopic Properties, Hirshfeld Surfaces, Donor-Acceptor Interactions and Molecular Docking of Clascosterone: A Promising Antitumor Agent. International Research Journal of Multidisciplinary Technovation, 6, (2024) 32–53. https://doi.org/10.54392/irjmt2444
- A. Ram Kumar, N. Kanagathara, S. Selvaraj, Spectroscopic, Structural and Molecular Docking Studies on N, N-Dimethyl-2-[6-methyl-2-(4-methylphenyl) Imidazo [1, 2-a] pyridin-3-yl] Acetamide, Physical Chemistry Research 12 (1) (2024) 95-107, https://doi.org/10.22036/PCR.2023.387911.2306
- P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka, M.A. Spackman, CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal o Applied Crystallography, 54, (2021) 1006–1011. https://doi.org/10.1107/S1600576721002910
- Y. Megrouss, Y. Salem, A. Mansour, B. Zohra Douaa, K. Sid Ahmed, H. Benaissi, M. Drissi, Abdelkader, C. (2024). Molecular Structure, Lattice Energy, Hirshfeld Surface and NCI-RDG Analysis, DFT Calculations, and In Silico Molecular Docking of an Imidazole Derivative. Physical Chemistry Research, 12(4), 975-990.