Abstract

Volume Phase Gratings (VPG) are often recorded using holographic emulsions such as photopolymer, Dichromated Gelatin (DCG), and silver halide. We employed silver halide emulsion to record the VPG in monochromatic red wavelength for solar concentration purposes. According to the Braggs condition, the recorded VPG's diffraction efficiency reaches its peak at the recorded angle and wavelength. For solar applications, we needed high diffraction efficiency over a wide angle and wavelength range. So, we captured multiplexed single VPG in our own panchromatic silver halide emulsion. The procedure of making panchromatic silver halide emulsion is described in depth. This technique is unique in that it achieves peak diffraction efficiency at broad wavelength and wide angle in a single multiplexed VPG. The panchromatic multiplexed VPG produced a high diffraction efficiency in wide-angle response with overall visible wavelengths. This study describes the high diffraction efficiency multiplexed VPG in its own manufactured panchromatic silver halide emulsion for solar concentrating applications.

Keywords

Silver halide emulsion; Holographic optical elements; Volume phase grating; Diffraction efficiency; Photovoltaic cell; Solar concentrator,

Downloads

Download data is not yet available.

References

  1. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, A. Sharifi, A review of principle and sun-tracking methods for maximizing solar systems output. Renewable and sustainable energy reviews, 13(8), (2009) 1800-1818. https://doi.org/10.1016/j.rser.2009.01.022
  2. B. Zaidi, Introductory chapter: Introduction to photovoltaic effect. Solar Panels and Photovoltaic Materials, (2018) 1-8. https://doi.org/10.1063/1.3582902
  3. J.W. Garland, T. Biegala, M. Carmody, C. Gilmore, S. Sivananthan, Next-generation multijunction solar cells: The promise of II-VI materials. Journal of Applied Physics, 109(10) (2011). https://doi.org/10.1063/1.3582902
  4. A.M. Bagher, M.M.A. Vahid, M. Mohsen, Types of solar cells and application. American Journal of optics and Photonics, 3(5), (2015) 94-113. https://doi.org/10.11648/j.ajop.20150305.17
  5. K. Markam, K. Sudhakar, M. Bhopal, Estimation of optimal tilt angle for solar photovoltaic installations in India. International Research Journal of Engineering and Technology, 3(5), (2016) 2735-2741.
  6. P. Hersch, K. Zweibel, (1982). Basic photovoltaic principles and methods (No. SERI/SP-290-1448). Solar Energy Research Inst (SERI), Golden, CO United States.
  7. Energizing Ohio for the 21st Century Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of Solar Cells (PHYS 6980) Fundamental Properties of Solar Cells; 2012;
  8. C.F. Chen, C.H. Lin, H.T. Jan, A solar concentrator with two reflection mirrors designed by using a ray tracing method. Optik, 121(11), (2010) 1042-1051. https://doi.org/10.1016/j.ijleo.2008.12.010
  9. D.C. Miller & S.R. Kurtz, Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application. Solar Energy Materials and Solar Cells, 95(8), (2011) 2037-2068.
  10. M. Khamooshi, H. Salati, F. Egelioglu, A. Hooshyar Faghiri, J. Tarabishi, S.A. Babadi, A review of solar photovoltaic concentrators. International Journal of Photoenergy, 2014(1), 958521. https://doi.org/10.1155/2014/958521
  11. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, X. Hao, Solar Cell Efficiency Tables (Version 60). Progress in Photovoltaics: Research and Applications 30, (2022) 687–670. https://doi.org/10.1002/pip.3595
  12. M.V. Collados, D. Chemisana, J. Atencia, Holographic solar energy systems: The role of optical elements. Renewable and Sustainable Energy Reviews, 59, (2016) 130-140. https://doi.org/10.1016/j.rser.2015.12.260
  13. J. Marín-Sáez, D. Chemisana, J. Atencia, M.V. Collados, Outdoor performance evaluation of a holographic solar concentrator optimized for building integration. Applied energy, 250, (2019) 1073-1084. https://doi.org/10.1016/j.apenergy.2019.05.075
  14. H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, S. Martin, Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy. Solar Energy, 155, (2017) 103-109. https://doi.org/10.1016/j.solener.2017.04.067
  15. R. Shechter, S. Reinhorn, Y. Amitai, A.A. Friesem, Planar holographic elements with uniform diffraction efficiency. Applied surface science, 106, (1996) 369-373. https://doi.org/10.1016/S0169-4332(96)00434-5
  16. A. Ghosh, A.K. Nirala, H.L. Yadav, Wavelength selective holographic concentrator: application to concentrated photovoltaics. Optik, 126(23), (2015) 4313-4318. https://doi.org/10.1016/j.ijleo.2015.07.201
  17. A. Ghosh, A.K. Nirala, H.L. Yadav, Optical design and characterization of holographic solar concentrators for photovoltaic applications. Optik, 168, (2018) 625-649. https://doi.org/10.1016/j.ijleo.2018.04.060
  18. M.A. Ferrara, V. Striano, G. Coppola, Volume holographic optical elements as solar concentrators: An Overview. Applied sciences, 9(1), (2019) 193. https://doi.org/10.3390/app9010193
  19. S.N. Singh, P. Saw, R. Kumar, Holography: New breakthrough in solar power conversion technology. International Journal of Engineering Science Technologies, 4, (2012) 2485.
  20. D.M. Tobnaghi, R. Madatov, D. Naderi, The Effect of Temperature on Electrical Parameters of Solar Cells. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(12), (2013) 6404-6407.
  21. H. Akbari, I. Naydenova, S. Martin, Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications. Applied optics, 53(7), (2014) 1343-1353. https://doi.org/10.1364/AO.53.001343
  22. I. Naydenova, H. Akbari, C. Dalton, M. Yahya, M. Ilyas, C.P.T. Wei, V. Toal, Photopolymer holographic optical elements for application in solar energy concentrators. Holography—Basic Principles and Contemporary Applications, (2013) 129-145. https://doi.org/10.5772/55109
  23. N. Vorzobova, P. Sokolov, Application of photopolymer materials in holographic technologies. Polymers, 11(12), (2019) 2020. https://doi.org/10.3390/polym11122020
  24. M.A. Ferrara, F. Borbone, G. Coppola, Holographic optical lenses recorded on a glassy matrix-based photopolymer for solar concentrators. In Photonics, 8(12), (2021) 585. https://doi.org/10.3390/photonics8120585
  25. A.A. Khan, H.L. Yadav, Dichromated gelatin, an efficient material for the fabrication of wavelength selective holographic solar concentrators for high-efficiency operation. Materials Today: Proceedings, 56, (2022) 94-99. https://doi.org/10.1016/j.matpr.2021.12.293
  26. R. Bhatt, L. Mainali, G. Bhatnagar, A. Sharma, A.K. Gupta, Testing of holographic optical elements for holographic gun-sight. Optics and lasers in engineering, 46(3), (2008) 217-221. https://doi.org/10.1016/j.optlaseng.2007.10.006
  27. I. Vázquez-Martín, J. Marín-Sáez, M. Gómez-Climente, D. Chemisana, M.V. Collados, J. Atencia, Full-color multiplexed reflection hologram of diffusing objects recorded by using simultaneous exposure with different times in photopolymer Bayfol® HX. Optics & Laser Technology, 143, (2021) 107303. https://doi.org/10.1016/j.optlastec.2021.107303
  28. X. Rong, X. Yu, C. Guan, H. Tian, A hogel-based holographic recording system and its hologram reconstruction improvement. Optik-International Journal for Light and Electron Optics, 124(18), (2013) 3642-3645. https://doi.org/10.1016/j.ijleo.2012.11.019
  29. V. Varadarajan, C. Shekar, Fabrication of two‐dimensional photonic quasi‐crystals with 18‐and 36‐fold by holography for solar application. IET Optoelectronics, 10(6), (2016) 217-220. https://doi.org/10.1049/iet-opt.2015.0123
  30. S. Blais-Ouellette, Holographic gratings for astronomy: atmospheric lines suppression and tunable filter. In Photonics North 2004: Photonic Applications in Astronomy, Biomedicine, Imaging, Materials Processing, and Education, 5578, (2004) 23-28. https://doi.org/10.1117/12.567440
  31. H.I. Bjelkhagen, P.G. Crosby, D.P.M. Green, E. Mirlis, N.J. Phillips, Fabrication of ultra-fine-grain silver halide recording material for color holography. In Practical Holography XXII: Materials and Applications, 6912, (2008) 76-89. https://doi.org/10.1117/12.765404
  32. D. Chemisana, M.V. Collados, M. Quintanilla, J. Atencia, Holographic lenses for building integrated concentrating photovoltaics. Applied energy, 110, (2013) 227-235. https://doi.org/10.1016/j.apenergy.2013.04.049
  33. V. Vadivelan, B. Chandar Shekar, Fabrication of a phase transmission holographic optical element in polycarbonate and its characterization. Applied Optics, 55(23), (2016) 6452-6457. https://doi.org/10.1364/AO.55.006452
  34. J. Blyth, R.B. Millington, A.G. Mayes, C.R. Lowe, A diffusion method for making silver bromide based holographic recording material. The Imaging Science Journal, 47(2), (1999) 87-91. https://doi.org/10.1080/13682199.1999.11736459
  35. M.S.H. Bhuiyan, T.J. Maternaghan, Photographic Materials. In Reference Module in Materials Science and Materials Engineering, (2016). https://doi.org/10.1016/B978-0-12-803581-8.02235-9
  36. M. Ulibarrena, L. Carretero, R. Madrigal, P. Acebal, S. Blaya, A. Fimia, Panchromatic emulsions for recording colour holograms. In Opto-Ireland 2005: Photonic Engineering, 5827, (2005) 173-178. https://doi.org/10.1117/12.605673
  37. C.G. Stojanoff, Holographic Dispersive Concentrators for Photovoltaic Power Generation Development of Laser Test and Measuring Techniques View Project Solar Cooling View Project;
  38. H. Abbasi, A. Granmayeh Rad, T. Zarei, N. Jalali Farahani, A Study on Applications of Holography in Solar Energy Installations. In International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), 155, (2014) 131-136. https://doi.org/10.1007/978-3-319-05521-3_17
  39. R.K. Kostuk, J. Castro, B. Myer, D. Zhang, G. Rosenberg, Holographic elements in solar concentrator and collection systems. In High and Low Concentrator Systems for Solar Electric Applications IV, 7407, (2009) 87-94. https://doi.org/10.1117/12.829569
  40. T. Wilm, J. Kibgies, R. Fiess, W. Stork, Multiplexed holographic combiner with extended eye box fabricated by wave front printing. In Photonics, 9(6), (2022) 419. https://doi.org/10.3390/photonics9060419
  41. Z. Huang, L. Cao, High bandwidth‐utilization digital holographic multiplexing: an approach using Kramers–Kronig relations. Advanced Photonics Research, 3(2), (2022) 2100273. https://doi.org/10.1002/adpr.202100273
  42. D. Velásquez, L.M. Giraldo, Diffraction efficiency adjustment to record high quality color holograms. Ingeniería y Ciencia, 11(22), (2015) 9-23. https://doi.org/10.17230/ingciencia.11.22.1
  43. J.H. Lee, H.Y. Wu, M.L. Piao, N. Kim, Holographic solar energy concentrator using angular multiplexed and iterative recording method. IEEE Photonics Journal, 8(6), (2016) 1-11. https://doi.org/10.1109/JPHOT.2016.2634699
  44. M.K. Sharma, Formation and characteristics of high resolution photographic plates. Indian journal of chemical technology, 8(2), (2001) 120-127.
  45. N.T. Shaked, V. Micó, M. Trusiak, A. Kuś, S.K. Mirsky, Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing. Advances in Optics and Photonics, 12(3), (2020) 556-611. https://doi.org/10.1364/AOP.384612
  46. Y. Taketomi, J.E. Ford, H. Sasaki, J. Ma, Y. Fainman, S.H. Lee, (1991). Incremental recording for photorefractive hologram multiplexing. Optics letters, 16(22), 1774-1776. https://doi.org/10.1364/OL.16.001774
  47. M. Shishova, A. Zherdev, D. Lushnikov, S. Odinokov, (2020) Recording of the multiplexed Bragg diffraction gratings for waveguides using phase mask. In Photonics, 7(4), 97. https://doi.org/10.3390/photonics7040097
  48. D. Choi, K. Hong, K.Y. Kim, K. Lee, I.M. Lee, B. Lee, Holographic reconstruction of finite Airy Beams with self-healed and multiplexed features. Journal of the Optical Society of Korea, 18(6), (2014) 793-798. https://doi.org/10.3807/JOSK.2014.18.6.793