Abstract

In advanced low temperature solid oxide fuel cell (LT-SOFC) technology, we present a comprehensive study on the effects of lanthanum co-substitution in ceria electrolyte. Using a co-precipitation synthesis approach, we successfully incorporated trivalent La ions into the ceria matrix to improve its structural and functional properties. This study investigates La3+ doped CeO2 solid electrolytes (LDC) synthesis and characterization at varying concentrations (0.2, 0.3, 0.4, and 0.5). The materials were characterized using a suite of analytical techniques. X-ray diffraction (XRD) analysis revealed that all samples maintained a cubic fluorite-type structure with evident changes in peak intensity and broadening as La3+ ion concentration increased, indicative of induced lattice defects FT-IR spectra indicated minor modifications in the Ce-O bond vibrational modes. Optical studies demonstrated enhanced absorption in the UV region and a consistent band gap of 3.15 eV across all samples, underscoring the doping's influence on electronic transitions. Scanning electron microscopy (SEM) images highlighted increased grain sizes and improved interparticle connectivity, which is essential for material performance. X-ray fluorescence spectroscopy verified the existence of cerium and lanthanum, proving the successful addition of dopants. Raman spectroscopy also confirmed changes in the structure, indicating alterations in the characteristic vibrational frequencies and a decrease in their intensity as the dopant concentration increased. The conductivity of the material was tested at low temperatures ranging from 573 K to 873 K for use in Solid Oxide Fuel Cells, with the highest conductivity recorded at 0.21 mS/cm at 873 K.

Keywords

Solid Oxide Fuel Cell, Solid Electrolyte, La-Doped Ceo2, Impedance, Ionic Conductivity, Band Gap, Activation Energy,

Downloads

Download data is not yet available.

References

  1. X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte. Materials Science and Engineering: A, 335(1-2), (2002) 246-252. https://doi.org/10.1016/S0921-5093(01)01935-9
  2. A.J. Jacobson, Materials for solid oxide fuel cells. Chemistry of Materials, 22(3) (2010) 660-674. https://doi.org/10.1021/cm902640j
  3. C. Zhang, C.J. Li, G. Zhang, X.J. Ning, C.X. Li, H. Liao, C. Coddet, Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Materials Science and Engineering: B, 137(1-3), (2007) 24-30. https://doi.org/10.1016/j.mseb.2006.10.005
  4. M.D. Mat, X. Liu, Z. Zhu, B. Zhu, Development of cathodes for methanol and ethanol fuelled low temperature (300–600 C) solid oxide fuel cells. International journal of hydrogen energy, 32(7), (2007) 796-801. https://doi.org/10.1016/j.ijhydene.2006.12.012
  5. S.C. Singhal, K. Kendall, (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier.
  6. S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404(6775), (2000) 265-267. https://doi.org/10.1038/35005040
  7. Y. Mizutani, M. Tamura, M. Kawai, O. Yamamoto, Development of high-performance electrolyte in SOFC. Solid State Ionics, 72, (1994) 271-275. https://doi.org/10.1016/0167-2738(94)90158-9
  8. H.A. Taroco, J.F. Santos, R.Z. Domingues, T. Matencio, Ceramic materials for solid oxide fuel cells. Advances in ceramics-Synthesis and Characterization, processing and specific applications, (2011) 423-446.
  9. M.C. Brant, T. Matencio, L. Dessemond, R.Z. Domingues, Electrical degradation of porous and dense LSM/YSZ interface. Solid State Ionics, 177(9-10), (2006) 915-921. https://doi.org/10.1016/j.ssi.2006.02.012
  10. C. Varanasi, C. Juneja, C. Chen, B. Kumar, Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia. Journal of power sources, 147(1-2), (2005) 128-135. https://doi.org/10.1016/j.jpowsour.2005.01.028
  11. F. Yuan, J. Wang, H. Miao, C. Guo, W.G. Wang, Investigation of the crystal structure and ionic conductivity in the ternary system (Yb2O3) x–(Sc2O3)(0.11− x)–(ZrO2) 0.89 (x= 0–0.11). Journal of alloys and compounds, 549, (2013) 200-205. https://doi.org/10.1016/j.jallcom.2012.09.089
  12. S. Omar, A. Belda, A. Escardino, N. Bonanos, Ionic conductivity ageing investigation of 1Ce10ScSZ in different partial pressures of oxygen. Solid State Ionics, 184(1), (2011) 2-5. https://doi.org/10.1016/j.ssi.2010.09.042
  13. M. Hirano, T. Oda, K. Ukai, Y. Mizutani, Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties. Solid State Ionics, 158(3-4), (2003) 215-223. https://doi.org/10.1016/S0167-2738(02)00912-8
  14. Y. Arachi, T. Asai, O. Yamamoto, Y. Takeda, N. Imanishi, K. Kawate, C. Tamakoshi, Electrical conductivity of ZrO2 Sc2O3 doped with HfO2, CeO2, and Ga2O3. Journal of the Electrochemical Society, 148(5), (2001) A520. https://doi.org/10.1149/1.1366622
  15. Z. Lei, Q. Zhu, Phase transformation and low temperature sintering of manganese oxide and scandia co-doped zirconia. Materials letters, 61(6), (2007) 1311-1314. https://doi.org/10.1016/j.matlet.2006.07.020
  16. A.S. Nesaraj, (2010) Recent developments in solid oxide fuel cell technology–a review. CSIR, 169-176.
  17. B. Zhu, Functional ceria–salt-composite materials for advanced ITSOFC applications. Journal of Power sources, 114(1), (2003) 1-9. https://doi.org/10.1016/S0378-7753(02)00592-X
  18. M. Dudek, Composite oxide electrolytes for electrochemical devices. Advances in Materials Science, 8(1), (2008) 15-30. https://doi.org/10.2478/v10077-008-0002-9
  19. S. Kuharuangrong, Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. Journal of Power Sources, 171(2), (2007) 506-510. https://doi.org/10.1016/j.jpowsour.2007.05.104
  20. M.L. Faro, D. La Rosa, V. Antonucci, A.S. Arico, Intermediate temperature solid oxide fuel cell electrolytes. Journal of the Indian Institute of Science, 89(4), (2009) 363-380.
  21. H. Inaba, H. Tagawa, Ceria-based solid electrolytes. Solid state ionics, 83(1-2), (1996) 1-16. https://doi.org/10.1016/0167-2738(95)00229-4
  22. A. Gondolini, E. Mercadelli, A. Sanson, S. Albonetti, L. Doubova, S. Boldrini, Microwave-assisted synthesis of gadolinia-doped ceria powders for solid oxide fuel cells. Ceramics International, 37(4), (2011) 1423-1426. https://doi.org/10.1016/j.ceramint.2011.01.010
  23. J.W. Fergus, Electrolytes for solid oxide fuel cells. Journal of power sources, 162(1), (2006) 30-40. https://doi.org/10.1016/j.jpowsour.2006.06.062
  24. M. Dudek, Ceramic electrolytes in the CeO2-Gd2O3-SrO system-Preparation, properties and application for solid oxide fuel cells. International Journal of Electrochemical Science, 7(4), (2012) 2874-2889. https://doi.org/10.1016/S1452-3981(23)13921-6
  25. J. Fergus, R. Hui, X. Li, D.P. Wilkinson, J. Zhang, (2016) Solid oxide fuel cells: materials properties and performance. CRC press. https://doi.org/10.1201/9781420088847
  26. B. Li, X. Wei, W. Pan, Improved electrical conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by co-doping. International journal of hydrogen energy, 35(7), (2010) 3018-3022. https://doi.org/10.1016/j.ijhydene.2009.07.002
  27. Y. Zheng, Y. Shi, H. Gu, L. Gao, H. Chen, L. Guo, La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs. Materials Research Bulletin, 44(8), (2009) 1717-1721. https://doi.org/10.1016/j.materresbull.2009.03.017
  28. A. Rafique, R. Raza, N. Akram, M.K. Ullah, A. Ali, M. Irshad, K. Siraj, M. Ajmal Khan, B. Zhu, R. Dawson, Significance enhancement in the conductivity of core shell nanocomposite electrolytes. RSC advances, 5(105), (2015) 86322-86329. https://doi.org/10.1039/C5RA16763A
  29. M. Kahlaoui, S. Chefi, A. Inoubli, A. Madani, C. Chefi, Synthesis and electrical properties of co-doping with La3+, Nd3+, Y3+, and Eu3+ citric acid-nitrate prepared samarium-doped ceria ceramics. Ceramics International, 39(4), (2013) 3873-3879. https://doi.org/10.1016/j.ceramint.2012.10.230
  30. Y.P. Fu, S.B. Wen, C.H. Lu, Preparation and characterization of samaria‐doped ceria electrolyte materials for solid oxide fuel cells. Journal of the American Ceramic Society, 91(1), (2008) 127-131. https://doi.org/10.1111/j.1551-2916.2007.01923.x
  31. N. Jaiswal, S. Upadhyay, D. Kumar, O. Parkash, Ionic conductivity investigation in lanthanum (La) and strontium (Sr) co-doped ceria system. Journal of power sources, 222, (2013) 230-236. https://doi.org/10.1016/j.jpowsour.2012.08.095
  32. Dudek, M. (2008). Ceramic oxide electrolytes based on CeO2—preparation, properties and possibility of application to electrochemical devices. Journal of the European ceramic society, 28(5), 965-971. https://doi.org/10.1016/j.jeurceramsoc.2007.09.004
  33. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, (2015) 141-337. https://doi.org/10.1016/j.pmatsci.2015.01.001
  34. H. Hayashi, M. Kanoh, C.J. Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, Thermal expansion of Gd-doped ceria and reduced ceria. Solid State Ionics, 132(3-4), (2000) 227-233. https://doi.org/10.1016/S0167-2738(00)00646-9
  35. L. Zhang, M. Liu, J. Huang, Z. Song, Y. Fu, Y. Chang, C. Li, T. He, (2014) Improved thermal expansion and electrochemical performances Ba0.6Sr0.4Co0.9Nb0.1O3−δ–Gd0.1Ce0.9O1.95 composite cathodes for IT-SOFCs. International journal of hydrogen energy, 39(15), 7972-7979. https://doi.org/10.1016/j.ijhydene.2014.03.055
  36. K. Venkataramana, C. Madhusudan, C. Madhuri, C.V. Reddy, Synthesis, characterization and thermal expansion of Ce0. 8–xSm0. 2ZrxO2-δ Solid electrolytes for IT-SOFC applications. Materials Today: Proceedings, 3(10), (2016) 3908-3913. https://doi.org/10.1016/j.matpr.2016.11.048
  37. A. Ali, R. Raza, M. Kaleem Ullah, A. Rafique, B. Wang, B. Zhu, Alkaline earth metal and samarium co-doped ceria as efficient electrolytes. Applied Physics Letters, 112(4), (2018). https://doi.org/10.1063/1.5005824
  38. N. Momin, J. Manjanna, Ionic Conductivity of Ce0. 91Ca0. 09O2-d as an Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. Research Journal of Chemistry and Environment, 25(1), (2021) 1-9. https://doi.org/10.25303/2512rjce001009
  39. N. Jaiswal, D. Kumar, S.Upadhyay, O. Parkash, Ceria co-doped with calcium (Ca) and strontium (Sr): a potential candidate as a solid electrolyte for intermediate temperature solid oxide fuel cells. Ionics, 20, (2014) 45-54. https://doi.org/10.1007/s11581-013-0936-8
  40. N. Momin, J. Manjanna, S. Kobayashi, S.T. Aruna, S.S. Kumar, G.P. Nayaka, Synthesis and ionic conductivity of calcium-doped ceria relevant to solid oxide fuel cell applications. Materials Advances, 3(23), (2022) 8780-8791. https://doi.org/10.1039/D2MA00868H
  41. N. Momin, J. Manjanna, L. D’Souza, S.T. Aruna, S.S. Kumar, Synthesis, structure and ionic conductivity of nanocrystalline Ce1− xLaxO2− δ as an electrolyte for intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds, 896, (2022)163012. https://doi.org/10.1016/j.jallcom.2021.163012
  42. J. Zdravkovic, B. Simovic, A. Golubovic, D. Poleti, I. Veljkovic, M. Scepanovic, G. Brankovic, Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors. Ceramics International, 41(2), (2015) 1970-1979. https://doi.org/10.1016/j.ceramint.2014.08.122
  43. T. Jeyakumaran, N. Venkatesh Bharathi, R. Shanmugavel, P. Sriramachandran, S. Ramaswamy, Structural, Vibrational, Optical and Improved Photoluminescence Properties of Dy 3+ Doped Ca2KZn2V3O12 Phosphors. Journal of Inorganic and Organometallic Polymers and Materials, 31, (2021) 695-703. https://doi.org/10.1007/s10904-020-01766-5
  44. W.H. Weber, K.C. Hass, J.R. McBride, Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48(1), (1993) 178. https://doi.org/10.1103/PhysRevB.48.178
  45. O. Kraynis, I. Lubomirsky, T. Livneh, Resonant Raman scattering in undoped and lanthanide-doped CeO2. The Journal of Physical Chemistry C, 123(39), (2019) 24111-24117. https://doi.org/10.1021/acs.jpcc.9b06918
  46. J. Liu, Z. Zhao, Y. Chen, C. Xu, A. Duan, G. Jiang, Different valent ions-doped cerium oxides and their catalytic performances for soot oxidation. Catalysis today, 175(1), (2011) 117-123. https://doi.org/10.1016/j.cattod.2011.05.023
  47. A. Kalpana Devi, G. Ram Kumar, C. Prerna, K. Amarsingh Bhabu, V. Sabarinathan, T.R. Rajasekaran, Superionic conductive La 3+ and Pr 3+ Co-doped cerium oxide for IT-SOFC applications. Journal of Materials Science: Materials in Electronics, 31, (2020) 10628-10638. https://doi.org/10.1007/s10854-020-03612-3
  48. M. Boaro, S. Desinan, C. Abate, M. Ferluga, C. de Leitenburg, A. Trovarelli, Study on Redox, Structural and Electrical Properties of Ce x Zr1− x O2 for Applications in SOFC Anodes. Journal of the Electrochemical Society, 158(2), (2010) 22. https://doi.org/10.1149/1.3518756
  49. K.A. Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, G. Muralidharan, T.R. Rajasekaran, Enhanced electrochemical behavior of ceria based zirconia electrolytes for intermediate temperature solid oxide fuel cell applications. Journal of Materials Science: Materials in Electronics, 27, (2016) 10980-10992. https://doi.org/10.1007/s10854-016-5214-x
  50. A. Lakshmanan, S. Venkatachalam, Effect Temperature for improving the Li-ion conductivity of Li7La3Zr2O12. International Research Journal of Multidisciplinary Technovation, 6(1), (2024) 82-96. https://doi.org/10.54392/irjmt2417