Abstract

Currently, there is a notable prevalence of substantial traffic congestion and frequent vehicular accidents on roadways in contemporary times. Amalgamation of latest front-line technologies involving Internet of Things (IoT) and image classification has immense potential to advance the progress of a proficient traffic regulation system. To mitigate the occurrence of vehicular accidents, our research endeavors revolve around the comprehensive analysis of the prevailing road conditions. This meticulous examination allows us to effectively automate traffic routes orchestration, ensuring smooth vehicular movement across all lanes of the road network. The analysis of traffic patterns is conducted through the utilization of visual data images. The real time captured traffic images undergo processing using various object detection models named RetinaNet and the YOLO (You Only Look Once) models. A series of comparative evaluations suggests an improved traffic object identification capacity for the RetinaNet model as compared to all YOLO models.

Keywords

Road Traffic, RetinaNet, YOLO models, Object detection, IoT, Convolution Neural Network (CNN),

Downloads

Download data is not yet available.

References

  1. C. Janiesch, P. Zschech, K. Heinrich, Machine learning and deep learning. Electronic Markets, Springer, 31, (2021) 685-695. https://doi.org/10.1007/s12525-021-00475-2
  2. H. Kukadiya, D. Meva, N. N. Arora, S. Srivastava, Effective Groundnut Crop Management by Early Prediction of Leaf Diseases through Convolutional Neural Networks. International Research Journal of Multidisciplinary Technovation, 6(1), (2023) 17–31. https://doi.org/10.54392/irjmt2412
  3. C. Zhao, R. W. Liu, J. Qu, R. Gao, Deep learning-based object detection in maritime unmanned aerial vehicle imagery: Review and experimental comparisons. Engineering Applications of Artificial Intelligence, 128, (2024) 107513. https://doi.org/10.1016/j.engappai.2023.107513
  4. G. Cheng, X. Xie, J. Han, L. Guo, G.S. Xia, Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, (2020) 3735-3756. https://doi.org/10.1109/JSTARS.2020.3005403
  5. C. Li, X. Li, M. Chen, X, Sun, (2023) Deep Learning and Image Recognition. In 2023 IEEE 6th International Conference on Electronic Information and Communication Technology, IEEE, China. https://doi.org/10.1109/ICEICT57916.2023.10245041
  6. S.S.A. Zaidi, M.S. Ansari, A. Aslam, N. Kanwal, M. Asghar, B. Lee, A survey of modern deep learning based object detection models. Digital Signal Processing, 126, (2022) 103514. https://doi.org/10.1016/j.dsp.2022.103514
  7. S.M. Nagarajan, G.G. Deverajan, A.K. Bashir, R.P. Mahapatra, M.S. Al-Numay, IADF-CPS: Intelligent Anomaly Detection Framework towards Cyber Physical Systems. Computer Communications, 188, (2022) 81-89. https://doi.org/10.1016/j.comcom.2022.02.022
  8. M.A. Amanullah, R.A.A. Habeeb, F.H. Nasaruddin, A. Gani, E. Ahmed, A.S.M. Nainar, N.M. Akim, M. Imran, Deep learning and big data technologies for IoT security. Computer Communications, 151, (2020) 495-517. https://doi.org/10.1016/j.comcom.2020.01.016
  9. M. Karuppiah, T.V. Ramana, R. Mohanty, G.G. Devarajan, S.M. Nagarajan, UIoTN‐PMSE: Ubiquitous IoT network‐based predictive modeling in smart environment. International Journal of Communication Systems, (2023) e5661. https://doi.org/10.1002/dac.5661
  10. G.G. Devarajan, M. Thirunnavukkarasan, S.I. Amanullah, T. Vignesh, A. Sivaraman, An integrated security approach for vehicular networks in smart cities. Transactions on Emerging Telecommunications Technologies, 34(11), (2023) e4757. https://doi.org/10.1002/ett.4757
  11. M. Abbasi, A. Shahraki, A. Taherkordi, Deep learning for network traffic monitoring and analysis (NTMA): A survey. Computer Communications, 170, (2021) 19-41. https://doi.org/10.1016/j.comcom.2021.01.021
  12. J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie, S. Zha, A. Zhang, H. Zhang, Z. Zhang, Z. Zhang, S. Zheng, Y. Zhu, Gluoncv and gluonnlp: Deep learning in computer vision and natural language processing, The Journal of Machine Learning Research, 21(1), (2020) 845-851.
  13. C. Cai, M. Wei, Adaptive urban traffic signal control based on enhanced deep reinforcement learning. Scientific Reports, 14, (2024) 14116. https://doi.org/10.1038/s41598-024-64885-w
  14. B. Lin, Y. Guo, H. Luo, M. Ding, TITE: A transformer-based deep reinforcement learning approach for traffic engineering in hybrid SDN with dynamic traffic, Future Generation Computer Systems, 161, (2024) 95-105. https://doi.org/10.1016/j.future.2024.07.006
  15. A. John, D. Meva, Comparative Study of Various Algorithms for Vehicle Detection and Counting in Traffic, Communications in Computer and Information Science. Advancements in Smart Computing and Information Security (ASCIS 2022), 1760, (2022) 271–286. https://doi.org/10.1007/978-3-031-23095-0_20
  16. C.J. Lin, J.Y. Jhang, Intelligent traffic-monitoring system based on YOLO and convolutional fuzzy neural networks. IEEE Access, 10, (2022) 14120-14133. https://doi.org/10.1109/ACCESS.2022.3147866
  17. Y.Q. Huang, J.C. Zheng, S.D. Sun, C.F. Yang, J. Liu, Optimized YOLOv3 algorithm and its application in traffic flow detections. Applied Sciences, 10(9), (2020) 3079. https://doi.org/10.3390/app10093079
  18. R. Rahman, Z.B. Azad, B.M. Hasan, Densely-populated traffic detection using YOLOv5 and non-maximum suppression ensembling. Proceedings of the International Conference on Big Data, IoT, and Machine Learning, 95, (2021) 567–578. https://doi.org/10.1007/978-981-16-6636-0_43
  19. L. Zhang, H. Wang, X. Wang, S. Chen, H. Wang, K. Zheng, H. wang, Vehicle Object Detection Based on Improved RetinaNet. Journal of Physics: Conference Series, 1757(1), (2021) 012070. https://doi.org/10.1088/1742-6596/1757/1/012070
  20. A. Abdullah, J. Oothariasamy, Vehicle counting using deep learning models: a comparative study. International Journal of Advanced Computer Science and Applications, 11(7), (2020) 697-703. https://doi.org/10.14569/IJACSA.2020.0110784
  21. A. Saadeldin, M.M. Rashid, Video-based vehicle counting and analysis using YOLOv5 and DeepSORT with deployment on Jetson Nano. AJoEEE, 2(2), (2022) 11-20. https://doi.org/10.69955/ajoeee.2022.v2i2.34
  22. Y. Chen, Z. Li, An Effective Approach of Vehicle Detection Using Deep Learning. Computational Intelligence and Neuroscience, (2022) 1-9. https://doi.org/10.1155/2022/2019257
  23. Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, X. Guo, Real-Time Vehicle Detection Based on Improved YOLO v5. Sustainability, 14(19), (2022) 12274. https://doi.org/10.3390/su141912274
  24. C.J. Lin, S.Y. Jeng, H.W. Lioa, A real-time vehicle counting, speed estimation, and classification system based on virtual detection zone and YOLO. Mathematical Problems in Engineering, 2021, (2021) 1577614. https://doi.org/10.1155/2021/1577614
  25. A. Bochkovskiy, C.Y. Wang, H.Y. M. Liao, (2020) YOLOv4: Optimal Speed and Accuracy of Object Detection. ArXiv.
  26. I. Katsamenis, E.E. Karolou, A. Davradou, E. Protopapadakis, A. Doulamis, N. Doulamis, D. Kalogeras, TraCon: A novel dataset for real-time traffic cones detection using deep learning. In Novel & Intelligent Digital Systems Conferences, 556, (2022) 382-391. https://doi.org/10.1007/978-3-031-17601-2_37
  27. U. Nepal, H. Eslamiat, Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs. Sensors, 22(2), (2022) 464. https://doi.org/10.3390/s22020464
  28. S.M. Ali, Comparative analysis of YOLOv3, YOLOv4 and YOLOv5 for sign language detection. International Journal of Advance Research and Innovative Ideas in Education, 7(4), (2021) 2393-2398.
  29. C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, X. Wei , (2022) YOLOv6: A single-stage object detection framework for industrial applications. ArXiv. https://doi.org/10.48550/arXiv.2209.02976
  30. C.Y. Wang, A. Bochkovskiy, H.Y.M. Liao, (2023) YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Canada. https://doi.org/10.1109/CVPR52729.2023.00721
  31. M. Sohan, T.S. Ram, V. Ch, A Review on YOLOv8 and Its Advancements. Data Intelligence and Cognitive Informatics, (2024) 529-545. https://doi.org/10.1007/978-981-99-7962-2_39
  32. N.N. Hasibuan, M. Zarlis, S. Efendi, Detection and tracking different type of cars with YOLO model combination and deep sort algorithm based on computer vision of traffic controlling. Sinkron: jurnal dan penelitian teknik informatika, 5(2B), (2021) 210-220.