Abstract

Recent times, the nature fibers deepen its roots in the field of composite materials. Owing to its ecofriendly characteristics, the natural fibers had its upper hand to the synthetic fiber. But, usage of natural fiber alone doesn’t bring desirable characteristics to the fabricated material. Therefore, the amalgamation of synthetic and natural fiber as the reinforcement in the polymer composite brings desirable property to the newly fabricating material. In this paper, we utilized the Pineapple Leaf Fiber (PALF) and glass fiber as the reinforcement in the epoxy resin and fabricated the new material. The paper mainly concentrates to study the physical and mechanical characteristics of the material. The uniform distribution of PALF and glass fiber over the polymer matrix was confirmed with the help of images of Scanning Electron Microscope (SEM). The PALF and glass fiber of composition of 20 % and 15% of weight ratio shows significant resistance to brittleness and have high tensile strength. Consecutively, the PALF and glass fiber of composition of 25% and 10% of weight ratio yields higher bending strength and shows implacable resistance to compression and impact load.

Keywords

PALF, Glass Fiber, Mechanical Property, SEM, Physical Characterisitics,

Downloads

Download data is not yet available.

References

  1. A. Cislaghi, P. Sala, G. Borgonovo, C. Gandolfi, G.B. Bischetti, Towards More Sustainable Materials for Geo-Environmental Engineering: The Case of Geogrids. Sustainability, 13(5), (2021) 2585. https://doi.org/10.3390/su13052585
  2. E. Diabor, P. Funkenbusch, E.E. Kaufmann, Characterization of Cassava Fiber of Different Genotypes as a Potential Reinforcement Biomaterial for Possible Tissue Engineering Composite Scaffold Application. Fibers and Polymers, 20(2), (2019) 217–228. https://doi.org/10.1007/s12221-019-8702-9
  3. T. Essel, A.Koomson, M.P. Seniagya, G. Cobbold, S. Kwofie, B. Asimeng, P. Arthur, G. Awandare, E. Tiburu, Chitosan Composites Synthesized Using Acetic Acid and Tetraethylorthosilicate Respond Differently to Methylene Blue Adsorption. Polymers, 10(5), (2018) 466. https://doi.org/10.3390/polym10050466
  4. J. Odusote, V. Kumar, Mechanical Properties of Pineapple Leaf Fibre Reinforced Polymer Composites for Application as Prosthetic Socket. Journal of Engineering Technology, 6(1), (2016) 24–32. https://doi.org/10.21859/jet-06011
  5. S.K. Ramamoorthy, M. Skrifvars, A. Persson, A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polymer Reviews, 55(1), (2015) 107–162. https://doi.org/10.1080/15583724.2014.971124
  6. B.M. Cheirmakani, B. Subburaj, V. Balasubramanian, Exploring the Properties of Pineapple Leaf Fiber and Prosopis Julifora Powder Reinforced Epoxy Composite. Journal of Natural Fibers, 19(6), (2020) 2065–2076. https://doi.org/10.1080/15440478.2020.1798844
  7. S.S. Todkar, S.A. Patil, Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering, 174, (2019)106927. https://doi.org/10.1016/j.compositesb.2019.106927
  8. G.O. Glória, M.C.A. Teles, F.P.D. Lopes, C.M.F. Vieira, F.M. Margem, M.D.A. Gomes, S.N. Monteiro, Tensile strength of polyester composites reinforced with PALF. Journal of Materials Research and Technology, 6(4), (2017) 401–405. https://doi.org/10.1016/j.jmrt.2017.08.006
  9. T. Krishnan, S. Jayabal, V.N. Krishna, Tensile, flexural, impact, and hardness properties of alkaline-treated Sunnhemp fiber reinforced polyester composites. Journal of Natural Fibers, 17(3), (2018) 326–336. https://doi.org/10.1080/15440478.2018.1492488
  10. S. Joshi, S. Patel, Review on Mechanical and Thermal Properties of Pineapple Leaf Fiber (PALF) Reinforced Composite. Journal of Natural Fibers, 19(15), (2021) 10157–10178. https://doi.org/10.1080/15440478.2021.1993487
  11. S. Sun, S. Pillay, H. Ning, Mechanical behaviors of composites made of natural fibers through environmentally friendly treatment. Journal of Thermoplastic Composite Materials, 37(12), (2024). https://doi.org/10.1177/08927057241239954
  12. H. Jamshaid, R. Mishra, J. Militky, M. Pechociakova, M.T. Noman, Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers and Polymers, 17(10), (2016) 1675–1686. https://doi.org/10.1007/s12221-016-6563-z
  13. W. Sampath, P. Sandaruwan, D. Edirisinghe, Y. Sudusingha, Effect of Artocarpus Heterophyllus Latex on Properties of Calcium Carbonate Filled Natural Rubber/Low Density Polyethylene/ Waste Polyethylene Composites. Physical Science & Biophysics Journal, 4(1), (2020). https://doi.org/10.23880/psbj-16000140
  14. F.A. Ekoputra, S. Sulistijono, I. Ismail, Effect a Chemical Treatment of Pineapple Leaf Fiber (PALF) for Mechanical Properties as a Reinforced Composite Matrix Polyesters. IPTEK Journal of Proceedings Series, 0(4), (2018) 19-26. https://doi.org/10.12962/j23546026.y2018i4.3840
  15. K. Yantaboot, T. Amornsakchai, Effect of mastication time on the low strain properties of short pineapple leaf fiber reinforced natural rubber composites. Polymer Testing, 57, (2017) 31–37. https://doi.org/10.1016/j.polymertesting.2016.11.006
  16. P. Sivasubramanian, K. Mayandi, C. Santulli, A. Alavudeen, N. Rajini, Effect of Fiber Length on Curing and Mechanical Behavior of Pineapple Leaf Fiber (PALF) Reinforced Natural Rubber Composites. Journal of Natural Fibers, 19(11), (2020) 4326–4337. https://doi.org/10.1080/15440478.2020.1856281
  17. M. Hazwani, M. Abdul Majid, M. Azaman, M. Ridzuan, E. Cheng, Mechanical properties and flammability of pineapple leaf fiber (PALF) reinforced polymer composite with hybridized fire retardants. Materials Today: Proceedings. (2023). https://doi.org/10.1016/j.matpr.2023.09.198
  18. N.L. Feng, S.D. Malingam, C.W. Ping, N. Razali, Mechanical properties and water absorption of kenaf/pineapple leaf fiber‐reinforced polypropylene hybrid composites. Polymer Composites, 41(4), (2019) 1255–1264. https://doi.org/10.1002/pc.25451
  19. R. Siakeng, M. Jawaid, H. Ariffin, S.M. Sapuan, Physical properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. IOP Conference Series: Materials Science and Engineering, 290, (2018) 012031. https://doi.org/10.1088/1757-899x/290/1/012031
  20. R. Siakeng, M. Jawaid, H. Ariffin, S.M. Sapuan, Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polymer Composites, 40(5), (2018) 2000–2011. https://doi.org/10.1002/pc.24978
  21. K. Vijay, Efficient Use of Natural Additives with Unfired Clay Bricks. International Research Journal of Modernization in Engineering Technology and Science. 6(3), (2024) 585-594.
  22. M.K. Gupta, R.K. Srivastava, Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polymer-Plastics Technology and Engineering, 55(6), (2015) 626–642. https://doi.org/10.1080/03602559.2015.1098694
  23. S. Rathika, K. Palanikumar, P. Raghavan, Physical Performance of Sisal-PALF-Banana/Glass Fiber Reinforced Polyester Hybrid Composites. Asian Journal of Chemistry, 26(14), (2014) 4157–4161. https://doi.org/10.14233/ajchem.2014.16049
  24. R. Potluri, Mechanical Properties of Pineapple Leaf Fiber Reinforced Epoxy Infused with Silicon Carbide Micro Particles. Journal of Natural Fibers, 16(1), (2017) 137–151. https://doi.org/10.1080/15440478.2017.1410511
  25. M. Indra Reddy, U. Prasad Varma, I. Ajit Kumar, V. Manikanth, P. Kumar Raju, Comparative Evaluation on Mechanical Properties of Jute, Pineapple leaf fiber and Glass fiber Reinforced Composites with Polyester and Epoxy Resin Matrices. Materials Today: Proceedings, 5(2), (2018) 5649–5654. https://doi.org/10.1016/j.matpr.2017.12.158
  26. A. Nopparut, T. Amornsakchai, Influence of pineapple leaf fiber and its surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composites. Polymer Testing, 52, (2016) 141–149. https://doi.org/10.1016/j.polymertesting.2016.04.012
  27. J.S. Yaradoddi, S. Hugar, N.R. Banapurmath, A.M. Hunashyal, M.B. Sulochana, A.S. Shettar, S.V. Ganachari, Alternative and Renewable Bio-based and Biodegradable Plastics. Handbook of Ecomaterials, (2018) 1-20. https://doi.org/10.1007/978-3-319-48281-1_150-1
  28. M. Asim, M. Jawaid, K. Abdan, M.R. Ishak, The Effect of Silane Treated Fibre Loading on Mechanical Properties of Pineapple Leaf/Kenaf Fibre Filler Phenolic Composites. Journal of Polymers and the Environment, 26(4), (2017) 1520–1527. https://doi.org/10.1007/s10924-017-1060-z
  29. Y. Xie, C.A. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), (2010) 806–819. https://doi.org/10.1016/j.compositesa.2010.03.005
  30. P. Bhadane, A. Mishra, the Effect of Alkali Treatment on Pineapple Leaf Fibers (PALF) on the Performance of PALF Reinforced Rice Starch Biocomposites. Journal of Natural Fibers, 19(16), (2022) 14235–14249. https://doi.org/10.1080/15440478.2022.2060406
  31. M. Boruvka, C. Ngaowthong, L. Behalek, J. Habr, P. Lenfeld, Effect of Dielectric Barrier Discharge Plasma Surface Treatment on the Properties of Pineapple Leaf Fiber Reinforced Poly(Lactic Acid) Biocomposites. Materials Science Forum, 862, (2016) 156–165. https://doi.org/10.4028/www.scientific.net/MSF.862.156
  32. D.M. Chaves, J.C. Araújo, C.V. Gomes, S.P. Gonçalves, R. Fangueiro, D.P. Ferreira, Extraction, characterization and properties evaluation of pineapple leaf fibers from Azores pineapple. Heliyon, 10(4), (2024) e26698. https://doi.org/10.1016/j.heliyon.2024.e26698
  33. P.J. Herrera-Franco, A. Valadez-González, (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering, 36(8), 597–608. https://doi.org/10.1016/j.compositesb.2005.04.001
  34. E.W. Gaba, B.O. Asimeng, E.E. Kaufmann, S.K. Katu, E.J. Foster, E.K. Tiburu, Mechanical and Structural Characterization of Pineapple Leaf Fiber. Fibers, 9(8), (2021) 51. https://doi.org/10.3390/fib9080051