Abstract

Serotonin, a neurotransmitter known for promoting feelings of happiness and optimism, was the subject of theoretical studies conducted using Gaussian software. In these experiments, the 6-311++G/B3LYP basis set was employed. The finite-field-based B3LYP/6-311++G (d,p) approach was used to compute the first-order hyper polarizability and associated properties of this chemical system. Additionally, a Natural Bond Orbital (NBO) analysis was conducted to assess the molecule's stability, taking into account hyper conjugative interactions and charge delocalization. Additionally, HOMO-LUMO energy levels were computed to assess whether a chemical exhibits electrophilic or nucleophilic characteristic. TD-DFT simulations were conducted to examine the electrical and optical characteristics of the material, including absorption wavelengths and excitation energy. Subsequently, the chemical compound's electrophilic or nucleophilic nature was determined by calculating the molecular electrostatic potential (MEP).

Keywords

Nonlinear Optics, Serotonin, HOMO-LUMO, TD-DFT,

Downloads

Download data is not yet available.

References

  1. L.F. Mohammad-Zadeh, L. Moses, S.M. Gwaltney-Brant, Serotonin: a review. Journal of Veterinary Pharmacology and Therapeutics, 31(3), (2008) 187–199. https://doi.org/10.1111/j.1365-2885.2008.00944.x
  2. M.A. Geyer, & F.X. Vollenweider, Serotonin research: contributions to understanding psychoses. Trends in pharmacological sciences, 29(9), 2008) 445-453. https://doi.org/10.1016/j.tips.2008.06.006
  3. M. Paulmichl, F. Friedrich, E. Woll, H. Weiss, F. Lang, Effects of serotonin on electrical properties of Madin-Darby canine kidney cells. Pflugers Archiv, 411, (1988) 394-400. https://doi.org/10.1007/BF00587718
  4. S. K. Kaushalya, Suman Nag, J. Balaji, S. Maiti, Serotonin: Multiphoton Imaging and Relevant Spectral Data. Multiphoton Microscopy in the Biomedical Sciences VIII, 6860, (2008) 223-230. https://doi.org/10.1117/12.763020
  5. H.A. Lechner, D.A. Baxter, J.W. Clark, J.H. Byrne, Bistability and Its Regulation by Serotonin in the Endogenously Bursting Neuron Rl5 in Aplysia, Journal of neurophysiology, 75(2), (1996) 957-962. https://doi.org/10.1152/jn.1996.75.2.957
  6. J. Best, H.F. Nijhout, M. Reed, Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theoretical Biology and Medical Modelling, 7, (2010) 1-26. https://doi.org/10.1186/1742-4682-7-34
  7. C. Cabezas, M. Varela, I. Pena, J.C. Lopez, J.L. Alonso, The microwave spectrum of neurotransmitter serotonin. Physical Chemistry Chemical Physics, 14(39), (2012) 13618-13623. https://doi.org/10.1039/C2CP42654D
  8. N. Schweighofer, S.C. Tanaka, K. Doya, Serotonin and the evaluation of future rewards: theory, experiments, and possible neural mechanisms. Annals of the New York Academy of Sciences, 1104(1), (2007) 289-300. https://doi.org/10.1196/annals.1390.011
  9. K.W. Kaufmann, E.S. Dawson, L.K. Henry, J.R. Field, R.D. Blakely, J. Meiler, Structural determinants of species‐selective substrate recognition in human and Drosophila serotonin transporters revealed through computational docking studies. Proteins: Structure, Function, and Bioinformatics, 74(3), (2009) 630-642. https://doi.org/10.1002/prot.22178
  10. A. Joshi, D.H. Wang, S. Watterson, P.L. McClean, C.K. Behera, T. Sharp, K. Wong-Lin, Opportunities for multiscale computational modelling of serotonergic drug effects in Alzheimer's disease. Neuropharmacology, 174, (2020) 108118. https://doi.org/10.1016/j.neuropharm.2020.108118
  11. S. Krishna Priya, R. Karunathan, E. Shobhana, B. Babu, R. Kesavasamy, S. Akila, M. Karpagavalli, A quantum chemical analysis of an organic compound: 3,5- bis (4-hydroxy phenyl)-2,4,6-trimethyl cyclohexanone, AIP Conference Proceedings 2446, (2022) https://doi.org/10.1063/5.0108265
  12. F.S. Manciu, J. D. Ciubuc, E.M. Sundin, C. Qiu, K.E. Bennet, Analysis of Serotonin Molecules on Silver Nanocolloids—A Raman Computational and Experimental Study. Sensors, 17(7), (2017) 1471. https://doi.org/10.3390/s17071471
  13. A. Prah, M. Purg, J. Stare, R.Vianello, J. Mavri,. How monoamine oxidase A decomposes serotonin: an empirical valence bond simulation of the reactive step. The Journal of Physical Chemistry B, 124(38), (2020) 8259-8265. https://doi.org/10.1021/acs.jpcb.0c06502
  14. M.C. Reed, H.F. Nijhout, J. Best, (2013). Computational studies of the role of serotonin in the basal ganglia. Frontiers in Integrative Neuroscience, 7, 41. https://doi.org/10.3389/fnint.2013.00041
  15. A. Rathore, V. Asati, M. Mishra, R. Das, V. Kashaw, S.K. Kashaw, Computational approaches for the design of novel dopamine D2 and serotonin 5-HT2A receptor dual antagonist towards schizophrenia. In Silico Pharmacology, 10(1), (2022) 7. https://doi.org/10.1007/s40203-022-00121-5
  16. T. Zeppelin, L.K. Ladefoged, S. Sinning, B. Schiøtt, Substrate and inhibitor binding to the serotonin transporter: Insights from computational, crystallographic, and functional studies. Neuropharmacology, 161 (2019) 107548. https://doi.org/10.1016/j.neuropharm.2019.02.030
  17. N.S. Yaakob, D.T. Nguyen, B. Exintaris, H.R. Irving, The C and E subunits of the serotonin 5-HT3 receptor subtly modulate electrical properties of the receptor. Biomedicine & Pharmacotherapy, 97, (2018) 1701-1709. https://doi.org/10.1016/j.biopha.2017.12.010
  18. S. Sevvanthi, S. Muthu, S. Aayisha, P. Ramesh, M. Raja, Spectroscopic (FT-IR, FT-Raman and UV-Vis), computational (ELF, LOL, NBO, HOMO-LUMO, Fukui, MEP) studies and molecular docking on benzodiazepine derivatives- heterocyclic organic arenes. Chemical Data Collections, 30, (2020) 100574, https://doi.org/10.1016/j.cdc.2020.100574
  19. H. Safia, L. Ismahan, G. Abdelkrim, C. Mouna, N. Leila, M. Fatiha, Density functional theories study of the interactions between host β-Cyclodextrin and guest 8-Anilinonaphthalene-1-sulfonate: Molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. Journal of Molecular Liquids, 280, (2019) 218-229. https://doi.org/10.1016/j.molliq.2019.01.019
  20. M. Buvaneswari, R. Santhakumari, C. Usha, R. Jayasree, Suresh Sagadevan, Synthesis, growth, structural, spectroscopic, optical, thermal, DFT, HOMO–LUMO, MEP, NBO analysis and thermodynamic properties of vanillin isonicotinic hydrazide single crystal, Journal of Molecular Structure, 1243 (2021), 130856. https://doi.org/10.1016/j.molstruc.2021.130856
  21. F. Basha, F.L.A. Khan, S. Muthu, M. Raja, Computational evaluation on molecular structure (Monomer, Dimer), RDG, ELF, electronic (HOMO-LUMO, MEP) properties, and spectroscopic profiling of 8-Quinolinesulfonamide with molecular docking studies. Computational and Theoretical Chemistry, 1198, (2021)113169. https://doi.org/10.1016/j.comptc.2021.113169
  22. M.A. Mumit, T.K. Pal, M.A. Alam, M.A.A.A.A. Islam, S. Paul, M.C. Sheikh, DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2, 4, 5-trimethoxyphenylmethylene) hydrazinecarbodithioate. Journal of molecular structure, 1220, (2020) 128715. https://doi.org/10.1016/j.molstruc.2020.128715
  23. A. Dwivedi, A. Kumar, Molecular Docking and Comparative Vibrational Spectroscopic Analysis, HOMO-LUMO, Polarizabilities, and Hyperpolarizabilities of N-(4- Bromophenyl)-4-Nitrobenzamide by Different DFT (B3LYP, B3PW91, and MPW1PW91) Methods. Polycyclic Aromatic Compounds, 41(2), (2021) 387-399. https://doi.org/10.1080/10406638.2019.1591466
  24. V. Anbu, R. Karunathan, K.A. Vijayalakshmi, A. David Stephen, P.V. Nidhin, Explosives properties of high energetic Trinitrophenyl Nitramide molecules: A DFT and AIM analysis, Arabian Journal of Chemistry, 12(5), (2019) 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023
  25. T. Karthick, V. Balachandran, S. Perumal, A. Nataraj, Rotational isomers, vibrational assignments, HOMO–LUMO, NLO properties and molecular electrostatic potential surface of N-(2 bromoethyl) phthalimide, Journal of Molecular Structure, 1005 (2011) 202–213, https://doi.org/10.1016/j.molstruc.2011.08.051
  26. S. Aslam, M. Haroon, T. Akhtar, M. Arshad, M. Khalid, Z. Shafiq, M. Imran, Ullah, A. Synthesis, Characterization, and DFT-Based Electronic and Nonlinear Optical Properties of Methyl 1‑(arylsulfonyl)-2-aryl-1Hbenzo[d]imidazole-6-carboxylates, American Chemical Society, 7(35), (2022) 31036-31046.
  27. M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey, F. Hatamjafari, Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo [d] thiazole-2 (3 H)-imine and its para-substituted derivatives: Solvent and substituent effects. Journal of Chemical Research, 45(1-2), (2021) 147-158. https://doi.org/10.1177/1747519820932091
  28. N. Choudhary, S. Bee, A. Gupta, P. Tandon, Comparative vibrational spectroscopic studies, HOMO–LUMO and NBO analysis of N-(phenyl)-2, 2-dichloroacetamide, N-(2-chloro phenyl)-2, 2-dichloroacetamide and N-(4-chloro phenyl)-2, 2-dichloroacetamide based on density functional theory. Computational and Theoretical Chemistry, 1016, (2013) 8-21. https://doi.org/10.1016/j.comptc.2013.04.008
  29. H. AlRabiah, S. Muthu, F. Al-Omary, A.M. Al-Tamimi, M. Raja, R.R.Muhamed, A.A.R. El-Emam, Molecular structure, vibrational spectra, NBO, Fukui function, HOMO-LUMO analysis and molecular docking study of 6-[(2-methylphenyl) sulfanyl]-5-propylpyrimidine-2, 4 (1H, 3H)-dione. Macedonian Journal of Chemistry and Chemical Engineering, 36(1), (2017) 59-80. https://doi.org/10.20450/mjcce.2017.1001
  30. B.F. Rizwana, J.C. Prasana, S. Muthu, C.S. Abraham, Spectroscopic (FT-IR, FT-Raman, NMR) investigation on 2-[(2-amino-6-oxo-6, 9-dihydro-3H-purin-9-yl) methoxy] ethyl (2S)-2-amino-3-methylbutanoate by Density Functional Theory. Materials Today: Proceedings, 18, (2019) 1770-1782. https://doi.org/10.1016/j.matpr.2019.05.276
  31. V. Mohanraj, P. Sakthivel, S. Ponnuswamy, P. Muthuraja, M. Dhandapani, Growth, spectral, thermal, NLO studies and computational studies on novel NLO organic crystals of N-Nitroso-r-2, c-6-bis (4-methoxyphenyl)-t-3-ethyl-piperidin-4-one. Materials Today: Proceedings, 8, (2019) 1-10. https://doi.org/10.1016/j.matpr.2019.02.074
  32. R. Sreedharan, S. Ravi, K.R. Raghi, T.M. Kumar, K. Naseema, Growth, linear-nonlinear optical studies and quantum chemistry formalism on an organic NLO crystal for opto-electronic applications: experimental and theoretical approach. SN Applied Sciences, 2, (2020) 1-18. https://doi.org/10.1007/s42452-020-2360-9
  33. N. Arif, Z. Shafiq, S. Noureen, M. Khalid, A. Ashraf, M. Yaqub, S.R. Al-Mhyawi, Synthesis, spectroscopic, SC-XRD/DFT and non-linear optical (NLO) properties of chromene derivatives. RSC advances, 13(1), (2023) 464-477. https://doi.org/10.1039/D2RA07134G
  34. S. Munsif, S. Khan, A. Ali, M.A. Gilani, J. Iqbal, R. Ludwig, K. Ayub, Remarkable nonlinear optical response of alkali metal doped aluminum phosphide and boron phosphide nanoclusters. Journal of Molecular Liquids, 271 (2018) 51-64. https://doi.org/10.1016/j.molliq.2018.08.121
  35. N. Karthikeyan, J. Joseph Prince, S. Ramalingam, S. Periandy, Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR - Mass spectroscopic analysis of Terephthalic acid using quantum Gaussian calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139, (2015) 229-242. http://dx.doi.org/10.1016/j.saa.2014.11.112
  36. M.S. Kodikara, R. Stranger, M.G. Humphrey, Computational studies of the nonlinear optical properties of organometallic complexes. Coordination Chemistry Reviews, 375, (2018) 389-409. https://doi.org/10.1016/j.ccr.2018.02.007
  37. H. Abbas, M. Shkir, S. AlFaify, Density functional study of spectroscopy, electronic structure, linear and nonlinear optical properties of l-proline lithium chloride and l-proline lithium bromide monohydrate: For laser applications. Arabian Journal of Chemistry, 12(8), (2019) 2336-2346. https://doi.org/10.1016/j.arabjc.2015.02.011
  38. S. Sambandam, B. Sarangapani, S. Paramasivam, R. Chinnaiyan, Molecular structure, vibrational spectral investigations (FT-IR and FT-Raman), NLO, NBO, HOMO-LUMO, MEP analysis of (E)-2-(3-pentyl-2, 6-diphenylpiperidin-4-ylidene)-N-phenylhydrazinecarbothioamide based on DFT and molecular docking studies. Biointerface Research in Applied Chemistry, 11 (2021) 11833-11855. https://doi.org/10.33263/BRIAC114.1183311855
  39. C. Karnan, K.S. Nagaraja, S. Manivannan, A. Manikandan, V. Ragavendran, Crystal structure, spectral investigations, DFT and antimicrobial activity of brucinium benzilate (BBA). Journal of Molecular Modeling, 27, (2021) 1-11. https://doi.org/10.21203/rs.3.rs-343924/v1
  40. T. Dey, K.S.S. Praveena, S. Pal, A.K. Mukherjee, three oxime ether derivatives: Synthesis, crystallographic study, electronic structure and molecular electrostatic potential calculation. Journal of Molecular Structure, 1137, (2017) 615-625. https://doi.org/10.1016/j.molstruc.2017.02.089
  41. R. Zaier, S. Hajaji, M. Kozaki, S. Ayachi, DFT and TD-DFT studies on the electronic and optical properties of linear π-conjugated cyclopentadithiophene (CPDT) dimer for efficient blue OLED. Optical Materials, 91, (2019) 108-114. https://doi.org/10.1016/j.optmat.2019.03.013
  42. H. Kargar, R. Behjatmanesh-Ardakani, V. Torabi, M. Kashani, Z. Chavoshpour-Natanzi, Z. Kazemi, V. Mirkhani, A. Sahraei, M.N. Tahir, M. Ashfaq, K.S. Munawar, Synthesis, characterization, crystal structures, DFT, TD-DFT, molecular docking and DNA binding studies of novel copper(II) and zinc(II) complexes bearing halogenated bidentate N,O-donor Schiff base ligands. Polyhedron, 195, (2021) 114988. https://doi.org/10.1016/j.poly.2020.114988
  43. S. Bibi, F. Farooq, F.Q. Bai, H.X. Zhang, DFT and TD-DFT studies of phenothiazine based derivatives as fluorescent materials for semiconductor applications, Shamsa Bibi, Faiza Farooq, Shafiq-ur-Rehman, Fu Quan Bai, Hong-Xing Zhang, Materials Science in Semiconductor Processing, 134, (2021) 106036. https://doi.org/10.1016/j.mssp.2021.106036