Abstract
This study investigates the dissociation behavior of water-soluble salts of Li and La and the unique behavior of Zr sources, resulting in the generation of Li+, La3+, and Zr4+ ions in aqueous solutions. The specific conductivity of calcined SG1 and SG2 displays temperature-dependent variations, with SG1 consistently exhibiting higher conductivity (2.08 x 10-4 S/cm) across the temperature range. The closed-packed structure facilitates the controllable mass transfer of lithium, enhancing ionic conductivity. The constructed LiFePO4/LLZO/AC device using these electrolytes demonstrates an impressive energy density of 1.95 Wh/kg and a power density of 144.92 W/kg, showcasing an excellent solid electrode-electrolyte interphase. Over 10,000 cycles, cyclic stability, with an average performance of 86%, underscores the potential of LLZO as a solid electrolyte for advanced energy storage devices. The sol-gel synthesis and densification strategy is a simple and effective method for obtaining lithium-rich LLZO electrolytes. The enhanced ionic conductivity and electrochemical performance of the solid-state device emphasize the practical viability of this approach, contributing to the sustainable development of advanced energy storage technologies.
Keywords
LLZO, Garnet type-electrolytes, Ionic conductivity, Solid device,Downloads
References
- S.R. Yeandel, B.J. Chapman, P.R. Slater, P. Goddard, Structure and lithium-ion dynamics in fluoride-doped cubic Li7La3Zr2O12 (LLZO) garnet for Li solid-state battery applications. Journal of Physical Chemistry C, 122(49), (2018) 27811-27819. https://doi.org/10.1021/acs.jpcc.8b07704
- S. Smetaczek, E. Pycha, J. Ring, M. Siebenhofer, S. Ganschow, S. Berendts, A. Nenning, M. Kubicek, D. Rettenwander, A. Limbeck, Investigating the electrochemical stability of Li7La3Zr2O12 solid electrolytes using field stress experiments, Journal of Materials Chemistry A, 9(27), (2021) 15226-15237. https://doi.org/10.1039/D1TA02983E
- S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. Siegel, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials, 28(1), (2016) 197-206. https://doi.org/10.1021/acs.chemmater.5b03854
- P.G. Bruce, A.R West, Phase diagram of the LISICON, solid electrolyte system, Li4GeO4-Zn2GeO4. Materials Research Bulletin, 15(3), (1980) 379-385. https://doi.org/10.1016/0025-5408(80)90182-8
- M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata, N. Sonoyama, Y. Kawamoto, Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system. Journal of Solid State Chemistry, 168(1), (2002) 140-148. https://doi.org/10.1006/jssc.2002.9701
- M. Hou, F. Liang, K. Chen, Y. Dai, D. Xue, Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology, 31(13), (2020) 132003. https://doi.org/10.1088/1361-6528/ab5be7
- R. DeWees, H. Wang, Synthesis and properties of NaSICON‐type LATP and LAGP solid electrolytes. ChemSusChem, 12(16), (2019) 3713-3725. https://doi.org/10.1002/cssc.201900725
- M. Catti, First-principles modeling of lithium ordering in the LLTO (Li xLa2/3-x/3TiO3) superionic conductor. Chemistry of Materials, 19(16), (2007) 3963-3972. https://doi.org/10.1021/cm0709469
- C. Uhlmann, P. Braun, J. Illig, A. Weber, E. Ivers-Tiffée, Interface and grain boundary resistance of a lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) solid electrolyte. Journal of Power Sources, 307, (2016) 578-586. https://doi.org/10.1016/j.jpowsour.2016.01.002
- S. Cao, S. Song, X. Xiang, Q. Hu, C. Zhang, Z. Xia, Y. Xu, W. Zha, J. Li, P.M. Gonzale, Y-H. Han, F. Chen, Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: A review. Journal of the Korean Ceramic Society, 56(2), (2019) 111-129. https://doi.org/10.4191/kcers.2019.56.2.01
- D. Mazza, Remarks on a ternary phase in the La2O3 Me2O5 Li2O system (Me=Nb, Ta). Materials Letters, 7(5-6), (1988) 205-207. https://doi.org/10.1016/0167-577X(88)90011-0
- H. Hyooma, K. Hayashi, Crystal structures of La3Li5M2O12 (M=Nb, Ta). Materials Research Bulletin, 23(10), (1988) 1399-1407. https://doi.org/10.1016/0025-5408(88)90264-4
- V. Thangadurai, H. Kaack, W.J.F. Weppner, Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society, 86(3), (2003) 437-440. https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
- R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition, 46(41), (2007) 7778-7781. https://doi.org/10.1002/anie.200701144
- J. Awaka, N. Kijima, H. Hayakawa, J. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 182(8) (2009) 2046-2052. https://doi.org/10.1016/j.jssc.2009.05.020
- J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. Akimoto, Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12, Chemistry Letters, 40(1), (2011) 60-62. https://doi.org/10.1246/cl.2011.60
- K.B. Dermenci, S. Turan, Structural insights on understanding the cubic phase stabilization mechanism of sol-gel synthesized Li7-3xAlxLa3Zr2O12 (x= 0-0.4)-The effect of ZrOCl2 and ZrO (NO3)2, Ceramics International, 44(10), (2018) 11852-11857. https://doi.org/10.1016/j.ceramint.2018.03.277
- I. Kokal, M. Somer, P.H.L. Notten, H.T. Hintzen, Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure, Solid State Ionics, 185(1), (2011) 42-46. https://doi.org/10.1016/j.ssi.2011.01.002
- A. Lakshmanan, R. Gurusamy, S. Venkatachalam, Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2-x(PO4)3. Ionics, 29(12), (2023) 5123-5138. https://doi.org/10.1007/s11581-023-05222-5
- Y. Tian, Y. Zhou, Y. Liu, C. Zhao, W. Wang, Y. Zhou, Formation mechanism of sol-gel synthesized Li7-3xAlxLa3Zr2O12 and the influence of abnormal grain growth on ionic conductivity. Solid State Ionics, 354, (2020) 115407. https://doi.org/10.1016/j.ssi.2020.115407
- Q.H. Nguyen, V.T. Luu, H.L. Nguyen, Y.-W. Lee, Y. Cho, S.Y. Kim, Y.-S. Jun, W. Ahn, Li7La3Zr2O12 garnet solid polymer electrolyte for highly stable all-solid-state batteries. Frontiers in Chemistry, 8, (2021) 619832. https://doi.org/10.3389/fchem.2020.619832
- Y. Zhang, W. Luo, D. Hu, Y. Deng, Y. Chen, J. Deng, Rapid Fabrication of of Li7La3Zr2O12 Solid Electrolyte with Enhanced Lithium Ionic Conductivity by Microwave Sintering. International Journal of Electrochemical Science, 15(8), (2020) 7163-7174. https://doi.org/10.20964/2020.08.67
- T. Yang, J. Zheng, Q. Cheng, Y-Y. Hu, C.K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology, ACS applied materials & interfaces, 9(26), (2017) 21773-21780. https://doi.org/10.1021/acsami.7b03806
- A. Sharafi, S. Yu, M. Naguib, M. Lee, C. Ma, H.M. Meyer, J. Nanda, M. Chi, D.J. Siegel, J. Sakamoto, Impact of air exposure and surface chemistry on Li- Li7La3Zr2O12 interfacial resistance, Journal of Materials Chemistry A, 5(26), (2017) 13475-13487. https://doi.org/10.1039/C7TA03162A
- F. Tietz, T. Wegener, M.T. Gerhards, M. Giarola, G. Mariotto, Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12, Solid State Ionics, 230, (2013) 77-82. https://doi.org/10.1016/j.ssi.2012.10.021
- Z. Cao, W. Wu, Y. Li, J. Zhao, W. He, J. Liu, H. Zhang, G. Li, Lithium ionic conductivity of Li7-3xFexLa3Zr2O12 ceramics by the Pechini method. Ionics, 26 (2020) 4247-4256. https://doi.org/10.1007/s11581-020-03580-y
- Z. Lu, Z. Yang, C. Li, K. Wang, J. Han, P. Tong, G. Li, B.S. Vishnugopi, P.P. Mukherjee, C. Yang, W. Li, Modulating Nanoinhomogeneity at Electrode–Solid Electrolyte Interfaces for Dendrite-Proof Solid-State Batteries and Long-Life Memristors. Advanced Energy Materials, 11(16), (2021) 2003811. https://doi.org/10.1002/aenm.202003811
- W. Lan, H. Fan, V.W.-h. Lau, J. Zhang, J. Zhang, R. Zhao, H. Chen, Realizing Li7La3Zr2O12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications, Sustainable Energy & Fuels, 4(4), (2020) 1812-1821. https://doi.org/10.1039/C9SE01162E
- D.M. Abdel-Basset, S. Mulmi, M.S. El-Bana, S.S. Fouad, V. Thangadurai, Structure, Ionic Conductivity, and Dielectric Properties of Li-Rich Garnet-type Li5+2xLa3Ta2–xSmxO12 (0≤ x≤ 0.55) and Their Chemical Stability. Inorganic chemistry, 56(15), (2017) 8865-8877. https://doi.org/10.1021/acs.inorgchem.7b00816
- J.-F. Wu, E.-Y. Chen, Y. Yu, L. Liu, Y. Wu, W.K. Pang, V.K. Peterson, X. Guo, Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity, ACS Applied Materials & Interfaces, 9(2), (2017) 1542-1552. https://doi.org/10.1021/acsami.6b13902
- P.J. Kumar, K. Nishimura, M. Senna, A. Düvel, P. Heitjans, T. Kawaguchi, N. Sakamoto, N. Wakiya, H. Suzuki, A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery. RSC Advances, 6(67), (2016) 62656-62667. https://doi.org/10.1039/C6RA09695F
- G.H. Kim, M.J. Kim, H.B. Kim, J.H. Ryu, H.C. Lee, Preparation and Characterization of Sol-Gel-Driven LixLa3Zr2O12 Solid Electrolytes and LiCoO2 Cathodes for All-Solid-State Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 20(11), (2020) 7002-7009. https://doi.org/10.1166/jnn.2020.18838
- F. Chen, M.X. Jing, H. Yang, W.Y. Yuan, M.Q. Liu, Y.S. Ji, S. Hussain, X.Q. Shen, Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics, 27 (2021) 1101-1111. https://doi.org/10.1007/s11581-020-03891-0
- X. Yan, Z. Li, H. Ying, F. Nie, L. Xue, Z. Wen, W.-Q. Han, A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. Ionics, 24 (2018) 1545-1551. https://doi.org/10.1007/s11581-017-2353-x