Abstract

This study investigates the dissociation behavior of water-soluble salts of Li and La and the unique behavior of Zr sources, resulting in the generation of Li+, La3+, and Zr4+ ions in aqueous solutions. The specific conductivity of calcined SG1 and SG2 displays temperature-dependent variations, with SG1 consistently exhibiting higher conductivity (2.08 x 10-4 S/cm) across the temperature range. The closed-packed structure facilitates the controllable mass transfer of lithium, enhancing ionic conductivity. The constructed LiFePO4/LLZO/AC device using these electrolytes demonstrates an impressive energy density of 1.95 Wh/kg and a power density of 144.92 W/kg, showcasing an excellent solid electrode-electrolyte interphase. Over 10,000 cycles, cyclic stability, with an average performance of 86%, underscores the potential of LLZO as a solid electrolyte for advanced energy storage devices. The sol-gel synthesis and densification strategy is a simple and effective method for obtaining lithium-rich LLZO electrolytes. The enhanced ionic conductivity and electrochemical performance of the solid-state device emphasize the practical viability of this approach, contributing to the sustainable development of advanced energy storage technologies.

Keywords

LLZO, Garnet type-electrolytes, Ionic conductivity, Solid device,

Downloads

Download data is not yet available.

References

  1. S.R. Yeandel, B.J. Chapman, P.R. Slater, P. Goddard, Structure and lithium-ion dynamics in fluoride-doped cubic Li7La3Zr2O12 (LLZO) garnet for Li solid-state battery applications. Journal of Physical Chemistry C, 122(49), (2018) 27811-27819. https://doi.org/10.1021/acs.jpcc.8b07704
  2. S. Smetaczek, E. Pycha, J. Ring, M. Siebenhofer, S. Ganschow, S. Berendts, A. Nenning, M. Kubicek, D. Rettenwander, A. Limbeck, Investigating the electrochemical stability of Li7La3Zr2O12 solid electrolytes using field stress experiments, Journal of Materials Chemistry A, 9(27), (2021) 15226-15237. https://doi.org/10.1039/D1TA02983E
  3. S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. Siegel, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials, 28(1), (2016) 197-206. https://doi.org/10.1021/acs.chemmater.5b03854
  4. P.G. Bruce, A.R West, Phase diagram of the LISICON, solid electrolyte system, Li4GeO4-Zn2GeO4. Materials Research Bulletin, 15(3), (1980) 379-385. https://doi.org/10.1016/0025-5408(80)90182-8
  5. M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata, N. Sonoyama, Y. Kawamoto, Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system. Journal of Solid State Chemistry, 168(1), (2002) 140-148. https://doi.org/10.1006/jssc.2002.9701
  6. M. Hou, F. Liang, K. Chen, Y. Dai, D. Xue, Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology, 31(13), (2020) 132003. https://doi.org/10.1088/1361-6528/ab5be7
  7. R. DeWees, H. Wang, Synthesis and properties of NaSICON‐type LATP and LAGP solid electrolytes. ChemSusChem, 12(16), (2019) 3713-3725. https://doi.org/10.1002/cssc.201900725
  8. M. Catti, First-principles modeling of lithium ordering in the LLTO (Li xLa2/3-x/3TiO3) superionic conductor. Chemistry of Materials, 19(16), (2007) 3963-3972. https://doi.org/10.1021/cm0709469
  9. C. Uhlmann, P. Braun, J. Illig, A. Weber, E. Ivers-Tiffée, Interface and grain boundary resistance of a lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) solid electrolyte. Journal of Power Sources, 307, (2016) 578-586. https://doi.org/10.1016/j.jpowsour.2016.01.002
  10. S. Cao, S. Song, X. Xiang, Q. Hu, C. Zhang, Z. Xia, Y. Xu, W. Zha, J. Li, P.M. Gonzale, Y-H. Han, F. Chen, Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: A review. Journal of the Korean Ceramic Society, 56(2), (2019) 111-129. https://doi.org/10.4191/kcers.2019.56.2.01
  11. D. Mazza, Remarks on a ternary phase in the La2O3 Me2O5 Li2O system (Me=Nb, Ta). Materials Letters, 7(5-6), (1988) 205-207. https://doi.org/10.1016/0167-577X(88)90011-0
  12. H. Hyooma, K. Hayashi, Crystal structures of La3Li5M2O12 (M=Nb, Ta). Materials Research Bulletin, 23(10), (1988) 1399-1407. https://doi.org/10.1016/0025-5408(88)90264-4
  13. V. Thangadurai, H. Kaack, W.J.F. Weppner, Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society, 86(3), (2003) 437-440. https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
  14. R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition, 46(41), (2007) 7778-7781. https://doi.org/10.1002/anie.200701144
  15. J. Awaka, N. Kijima, H. Hayakawa, J. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 182(8) (2009) 2046-2052. https://doi.org/10.1016/j.jssc.2009.05.020
  16. J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. Akimoto, Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12, Chemistry Letters, 40(1), (2011) 60-62. https://doi.org/10.1246/cl.2011.60
  17. K.B. Dermenci, S. Turan, Structural insights on understanding the cubic phase stabilization mechanism of sol-gel synthesized Li7-3xAlxLa3Zr2O12 (x= 0-0.4)-The effect of ZrOCl2 and ZrO (NO3)2, Ceramics International, 44(10), (2018) 11852-11857. https://doi.org/10.1016/j.ceramint.2018.03.277
  18. I. Kokal, M. Somer, P.H.L. Notten, H.T. Hintzen, Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure, Solid State Ionics, 185(1), (2011) 42-46. https://doi.org/10.1016/j.ssi.2011.01.002
  19. A. Lakshmanan, R. Gurusamy, S. Venkatachalam, Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2-x(PO4)3. Ionics, 29(12), (2023) 5123-5138. https://doi.org/10.1007/s11581-023-05222-5
  20. Y. Tian, Y. Zhou, Y. Liu, C. Zhao, W. Wang, Y. Zhou, Formation mechanism of sol-gel synthesized Li7-3xAlxLa3Zr2O12 and the influence of abnormal grain growth on ionic conductivity. Solid State Ionics, 354, (2020) 115407. https://doi.org/10.1016/j.ssi.2020.115407
  21. Q.H. Nguyen, V.T. Luu, H.L. Nguyen, Y.-W. Lee, Y. Cho, S.Y. Kim, Y.-S. Jun, W. Ahn, Li7La3Zr2O12 garnet solid polymer electrolyte for highly stable all-solid-state batteries. Frontiers in Chemistry, 8, (2021) 619832. https://doi.org/10.3389/fchem.2020.619832
  22. Y. Zhang, W. Luo, D. Hu, Y. Deng, Y. Chen, J. Deng, Rapid Fabrication of of Li7La3Zr2O12 Solid Electrolyte with Enhanced Lithium Ionic Conductivity by Microwave Sintering. International Journal of Electrochemical Science, 15(8), (2020) 7163-7174. https://doi.org/10.20964/2020.08.67
  23. T. Yang, J. Zheng, Q. Cheng, Y-Y. Hu, C.K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology, ACS applied materials & interfaces, 9(26), (2017) 21773-21780. https://doi.org/10.1021/acsami.7b03806
  24. A. Sharafi, S. Yu, M. Naguib, M. Lee, C. Ma, H.M. Meyer, J. Nanda, M. Chi, D.J. Siegel, J. Sakamoto, Impact of air exposure and surface chemistry on Li- Li7La3Zr2O12 interfacial resistance, Journal of Materials Chemistry A, 5(26), (2017) 13475-13487. https://doi.org/10.1039/C7TA03162A
  25. F. Tietz, T. Wegener, M.T. Gerhards, M. Giarola, G. Mariotto, Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12, Solid State Ionics, 230, (2013) 77-82. https://doi.org/10.1016/j.ssi.2012.10.021
  26. Z. Cao, W. Wu, Y. Li, J. Zhao, W. He, J. Liu, H. Zhang, G. Li, Lithium ionic conductivity of Li7-3xFexLa3Zr2O12 ceramics by the Pechini method. Ionics, 26 (2020) 4247-4256. https://doi.org/10.1007/s11581-020-03580-y
  27. Z. Lu, Z. Yang, C. Li, K. Wang, J. Han, P. Tong, G. Li, B.S. Vishnugopi, P.P. Mukherjee, C. Yang, W. Li, Modulating Nanoinhomogeneity at Electrode–Solid Electrolyte Interfaces for Dendrite-Proof Solid-State Batteries and Long-Life Memristors. Advanced Energy Materials, 11(16), (2021) 2003811. https://doi.org/10.1002/aenm.202003811
  28. W. Lan, H. Fan, V.W.-h. Lau, J. Zhang, J. Zhang, R. Zhao, H. Chen, Realizing Li7La3Zr2O12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications, Sustainable Energy & Fuels, 4(4), (2020) 1812-1821. https://doi.org/10.1039/C9SE01162E
  29. D.M. Abdel-Basset, S. Mulmi, M.S. El-Bana, S.S. Fouad, V. Thangadurai, Structure, Ionic Conductivity, and Dielectric Properties of Li-Rich Garnet-type Li5+2xLa3Ta2–xSmxO12 (0≤ x≤ 0.55) and Their Chemical Stability. Inorganic chemistry, 56(15), (2017) 8865-8877. https://doi.org/10.1021/acs.inorgchem.7b00816
  30. J.-F. Wu, E.-Y. Chen, Y. Yu, L. Liu, Y. Wu, W.K. Pang, V.K. Peterson, X. Guo, Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity, ACS Applied Materials & Interfaces, 9(2), (2017) 1542-1552. https://doi.org/10.1021/acsami.6b13902
  31. P.J. Kumar, K. Nishimura, M. Senna, A. Düvel, P. Heitjans, T. Kawaguchi, N. Sakamoto, N. Wakiya, H. Suzuki, A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery. RSC Advances, 6(67), (2016) 62656-62667. https://doi.org/10.1039/C6RA09695F
  32. G.H. Kim, M.J. Kim, H.B. Kim, J.H. Ryu, H.C. Lee, Preparation and Characterization of Sol-Gel-Driven LixLa3Zr2O12 Solid Electrolytes and LiCoO2 Cathodes for All-Solid-State Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 20(11), (2020) 7002-7009. https://doi.org/10.1166/jnn.2020.18838
  33. F. Chen, M.X. Jing, H. Yang, W.Y. Yuan, M.Q. Liu, Y.S. Ji, S. Hussain, X.Q. Shen, Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics, 27 (2021) 1101-1111. https://doi.org/10.1007/s11581-020-03891-0
  34. X. Yan, Z. Li, H. Ying, F. Nie, L. Xue, Z. Wen, W.-Q. Han, A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. Ionics, 24 (2018) 1545-1551. https://doi.org/10.1007/s11581-017-2353-x