Abstract

This study explores the potential of PANI-GO:MnO2/MoO3 nanocomposites as high-performance supercapacitors, addressing the increasing energy storage demands in portable electronics devices. By varying the amount of polyaniline (PANI) alongside a ternary composite of GO/MnO2/MoO3, the present study investigates their combined influence on electrochemical performance. XRD analysis confirmed the hexagonal phase with an average particle size of 19 nm, and FTIR analysis showed the functional groups associated with the title compound. FESEM images demonstrated the leaf-like structures, and the EDAX spectrum confirmed the presence of Mn and Mo elements in the as-prepared samples. Electrochemical analysis showed a maximum capacitance of 596 F/g. The unique blend of graphene, polyaniline, and ternary metal oxides in these nanocomposites holds great promise for advanced supercapacitors. The research aims to understand how different levels of polyaniline impact the overall composition, providing insights into the synergies between these components and their effects on energy storage capabilities.

Keywords

Super capacitors, Graphene Oxide, Ternary Metal Oxides, Charge/Discharge Rates,

Downloads

Download data is not yet available.

References

  1. C. Liu, F. Li, M. Lai-Peng, H.M. Cheng, Advanced materials for energy storage. Advanced Materials, 22(8), (2010) E28-62. https://doi.org/10.1002/adma.200903328
  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials, 7(11), (2008) 845–854. https://doi.org/10.1038/nmat2297
  3. B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 1(10), (2019) 3807–3835. https://doi.org/10.1039/C9NA00374F
  4. B.E. Conway, (1999) Electrochemical Supercapacitors. Electrochem. Springer, New York. https://doi.org/10.1007/978-1-4757-3058-6
  5. P. Periasamy, T. Krishnakumar, M. Sandhiya, M. Sathish, M. Chavali, P.F Siril, V.P. Devarajan, Electrochemical investigation of hybridized WO 3–CdS semiconducting nanostructures prepared by microwave-assisted wet chemical route for supercapacitor application. Journal of Materials Science: Materials in Electronics, 30(10), (2019) 9231-9244. https://doi.org/10.1007/s10854-019-01252-w
  6. P. Periasamy, T. Krishnakumar, M. Sathish, M. Chavali, P. F. Siril, V.P. Devarajan, Structural and electrochemical studies of tungsten oxide (WO3) nanostructures prepared by microwave assisted wet-chemical technique for supercapacitor. Journal of Materials Science: Materials in Electronics, 29(8), (2018) 6157–6166. https://doi.org/10.1007/s10854-018-8590-6
  7. T. Kim, H.C.Kang, T.T. Tung, J.D. Lee, H. Kim, W.S. Yang, H.G. Yoon, K.S. Suh, Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Advances, 2(23), (2012) 8808-8812. https://doi.org/10.1039/C2RA21400H
  8. M.M. Rahman, M.R. Hossen, I. Alam, M.H. Rahman, O. Faruk, M. Nurbas, M.M. Rahman, M.M.R. Khan, Synthesis of hexagonal boron nitride based PANI/h-BN and PANI-PPy/h-BN nanocomposites for efficient supercapacitors. Journal of Alloys and Compounds, 947, (2023) 169471. https://doi.org/10.1016/j.jallcom.2023.169471
  9. H. Hamedani, A.K. Ghasemi, M.S. Kafshgari, Y. Zolfaghari, L.A. Kafshgari, Electrochemical performance of 3D porous PANI/Gr/MIL-100(Fe) nanocomposite as a novel smart supercapacitor electrode material. Synthetic Metals, 298, (2023) 117428. https://doi.org/10.1016/j.synthmet.2023.117428
  10. P. Haldar, S. Biswas, V. Sharma, A. Chowdhury, A. Chandra, Mn3O4-polyaniline-graphene as distinctive composite for use in high-performance supercapacitors. Applied Surface Science, 491, (2019) 171–179. https://doi.org/10.1016/j.apsusc.2019.06.106
  11. R.R. Kumar, S. Thanigaivel, A.K. Priya, A. Karthick, C. Malla, P. Jayaraman, M. Muhibbullah, R.A. Alshgari, A.M. Karami, Fabrication of MnO2 Nanocomposite on GO Functionalized with Advanced Electrode Material for Supercapacitors. Journal Nanomaterials, (2022) 7929270. https://doi.org/10.1155/2022/7929270
  12. R. Kumar, R. Thangappan, Synergetic effect on enhanced electrochemical properties of MnO2 nanorods on g-C3N4/rGO nanosheet ternary composites for pouch-type flexible asymmetric supercapattery device. Journal of Energy Storage, 70, (2023) 108149. https://doi.org/10.1016/j.est.2023.108149
  13. S. Britto, V. Ramasamy, P. Murugesan, R. Thangappan, R. Kumar, Preparation and electrochemical validation of rGO-TiO2-MoO3 ternary nanocomposite for efficient supercapacitor electrode. Diamond and Related Materials, 122, (2022) 108798. https://doi.org/10.1016/j.diamond.2021.108798
  14. P.H. Patil, V.V. Kulkarni, T.D. Dongale, S.A. Jadhav, α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGO)-Based Nanocomposite for Supercapacitor Application. Journal of Composites Science, 7, (2023) 167. https://doi.org/10.3390/jcs7040167
  15. D. Sahoo, J. Shakya, S. Choudhury, S.S. Roy, L. Devi, B. Singh, S. Ghosh, B. Kaviraj, High-performance MnO2 Nanowire/MoS2 nanosheet composite for a symmetrical solid-state supercapacitor. ACS omega, 7, (2022) 16895-16905. https://doi.org/10.1021/acsomega.1c06852
  16. R. Kalpana, S. Ashokan, P. Subbaramaniyan, P. Shanmugasundaram, D. Sudha, S. Thennarasu, J. Jesbin, Preparation and Characterization of Graphene Doped Molybdenum Trioxide/Manganese Oxide Ternary Nanocomposite for Supercapacitor Performance. Brazilian Journal Physics, 51(6), (2021) 1597–1602. https://doi.org/10.1007/s13538-021-00940-5
  17. R. Kalpana, P. Subbramaniyan, Enhancing Surface Area, Electrochemical Performance, and Morphological Properties of MoO3/GO/MnO2 Ternary Nanocomposites through Annealing Temperature Optimization. Journal of Electronic Materials, 53(2), (2023) 1002–1011. https://doi.org/10.1007/s11664-023-10859-z
  18. S. Shahabuddin, N.M. Sarih, S. Mohamad, J.J. Ching, SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light. Polymers, 8(2), (2016) 27. https://doi.org/10.3390/polym8020027
  19. X. Wan, S. Yang, Z. Cai, Q. He, Y. Ye, Y. Xia, G. Li, J. Liu, Facile synthesis of MnO2 nanoflowers/N-doped reduced graphene oxide composite and its application for simultaneous determination of dopamine and uric acid. Nanomaterials, 9(6), (2019) 847. https://doi.org/10.3390/nano9060847
  20. S. Bai, C. Chen, R. Luo, A. Chen, D. Li, Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances. Sensors and Actuators B: Chemical, 216, (2015) 113–120. https://doi.org/10.1016/j.snb.2015.04.036
  21. P.M. Shafi, R. Dhanabal, A. Chithambararaj, S. Velmathi, and A. C. Bose, α-MnO2/h-MoO3 Hybrid Material for High Performance Supercapacitor Electrode and Photocatalyst. ACS Sustainable Chemistry & Engineering, 5(6), (2017) 4757–4770. https://doi.org/10.1021/acssuschemeng.7b00143
  22. F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), (2014) 2883–2887. https://doi.org/10.1016/j.jiec.2013.11.022
  23. B. Gowtham, V. Ponnuswamy, G. Pradeesh, J. Chandrasekaran, D. Aradhana, MoO3 overview: hexagonal plate-like MoO3 nanoparticles prepared by precipitation method. Journal of Materials Science: Materials in Electronics, 29(8), (2018) 6835–6843. https://doi.org/10.1007/s10854-018-8670-7
  24. M. Mylarappa, V.V. Lakshmi, K.R.V. Mahesh, H.P. Nagaswarupa, N. Raghavendra, A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications. IOP Conference Series: Materials Science and Engineering, 149(1), (2016) 012178. https://doi.org/10.1088/1757-899X/149/1/012178
  25. Y. Kumar, S. Chopra, A. Gupta, Y. Kumar, S.J. Uke, S.P. Mardikar, Low temperature synthesis of MnO2 nanostructures for supercapacitor application. Materials Science for Energy Technologies. 3, (2020) 566–574. https://doi.org/10.1016/j.mset.2020.06.002
  26. M.A. Marzouk, H.A. ElBatal, R.L. Elwan, Effect of MoO3, MnO2 or mixed dopants on the spectral properties and crystallization behavior of sodium phosphate glasses containing either MgO or MgF2. Applied Physics A, 125(6), (2019) 1–11. https://doi.org/10.1007/s00339-019-2679-5
  27. U.M. Chougale, J.V. Thombare, V.J. Fulari, A.B. Kadam, (2013) Synthesis of polyaniline nanofibres by SILAR method for supercapacitor application. International Conference on Energy Efficient Technologies for Sustainability, IEEE, India. https://doi.org/10.1109/ICEETS.2013.6533537
  28. S. Verma, V.K. Pandey, B. Verma, Facile synthesis of graphene oxide-polyaniline-copper cobaltite (GO/PANI/CuCo2O4) hybrid nanocomposite for supercapacitor applications. Synthetic Metals, 286, (2022) 117036. https://doi.org/10.1016/j.synthmet.2022.117036
  29. B. Sydulu Singu, P. Srinivasan, S. Pabba, Benzoyl Peroxide Oxidation Route to Nano Form Polyaniline Salt Containing Dual Dopants for Pseudocapacitor. Journal of the Electrochemical Society, 159(1), (2011) A6–A13. https://doi.org/10.1149/2.036201jes
  30. T.F. Emiru, D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large-scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), (2017) 74–79. https://doi.org/10.1016/j.ejbas.2016.11.002
  31. E. Andrijanto, S. Shoelarta, G. Subiyanto, S. Rifki, Facile synthesis of graphene from graphite using ascorbic acid as reducing agent. AIP Conference Proceeding, 1725 (2016). https://doi.org/10.1063/1.4945457
  32. X. Liu, P. Shang, Y. Zhang, X. Wang, Z. Fan, B. Wang, Y. Zheng, Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes. Journal of Materials Chemistry, 2(37), (2014) 15273–15278. https://doi.org/10.1039/C4TA03077J
  33. L. Wen, K. Li, J. Liu, Y. Huang, F. Bu, B. Zhao, Y. Xu, Graphene/polyaniline@carbon cloth composite as a high-performance flexible supercapacitor electrode prepared by a one-step electrochemical co-deposition method. RSC Advances, 7(13), (2017) 7688–7693. https://doi.org/10.1039/C6RA27545A
  34. Z. Yang, L. Tang, J. Ye, D. Shi, S. Liu, M. Chen, Hierarchical nanostructured α-Fe2O3/polyaniline anodes for high performance supercapacitors. Electrochimica Acta, 269, (2018) 21–29. https://doi.org/10.1016/j.electacta.2018.02.144
  35. H. Chauhan, M.K. Singh, S.A. Hashmi, S. Deka, Synthesis of surfactant-free SnS nanorods by a solvothermal route with better electrochemical properties towards supercapacitor applications. RSC Advances, 5(22), (2015) 17228–17235. https://doi.org/10.1039/C4RA15563G
  36. B. Senthilkumar, K. Vijaya Sankar, C. Sanjeeviraja, R. Kalai Selvan, Synthesis and physico-chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. Journal of Alloys and Compounds, 553, (2013) 350–357. https://doi.org/10.1016/j.jallcom.2012.11.122