Abstract

The utilization of composite materials in construction has recently exerted a significant impact on society, particularly concerning ecological responsibility and environmental considerations. On a daily basis, proposals advocating the use of emerging materials crafted from discarded or repurposed items are put forth to transcend the limitations posed by conventional resources. One notable aspect of this movement revolves around textile components, encompassing fibres such as wool, cotton, cannabis, and flax. Over the past decade, there has been a heightened focus on worn clothing, as it represents an unprocessed product that holds both commercial viability and ecological benefits. Approximately 1.5 percent of the global waste generated daily comprises textile scraps, with blue jeans, crafted from cotton, standing out as the most prevalent type of apparel worldwide. Textile scraps find new life through recycling, serving various purposes such as the creation of electrical wires, the production of pulverized substances for temperature and acoustic insulation materials, and the incorporation as filler or reinforcement in concrete construction. This paper delves into multiple themes, covering (i) the adverse environmental impacts stemming from the extensive use of clothing; (ii) the recycling and reclamation of textile waste; and (iii) the utilization of waste and reclaimed materials from textiles as building components.

Keywords

Concrete materials, Waste Management, Recycling, Natural fiber, Environment, Sustainable,

Downloads

Download data is not yet available.

References

  1. M. Fareghian, M. Afrazi, A. Fakhimi, Soil Reinforcement by Waste Tire Textile Fibers: Small-Scale Experimental Tests. Journal of Materials in Civil Engineering, 35(2), (2023) 4022402.https://doi.org/10.1061/(ASCE)MT.1943-5533.0004574
  2. A. Patti, G. Cicala, D. Acierno, Eco-sustainability of the textile production: Waste recovery and current recycling in the Composites world. Polymers, 13(1), (2021) 134. https://doi.org/10.3390/polym13010134
  3. C. Stone, F.M. Windsor, M. Munday, I. Durance, Natural or synthetic – how global trends in textile usage threaten freshwater environments. Science of the Total Environment, 718, (2020) 134689. https://doi.org/10.1016/j.scitotenv.2019.134689
  4. Y.L. Pang, A.Z. Abdullah, Current status of textile industry wastewater management and research progress in malaysia: A review. Clean - Soil, Air, Water, 41(8), (2013) 751–764. https://doi.org/10.1002/clen.201000318
  5. J.P. Juanga-Labayen, I. V. Labayen, Q. Yuan, A Review on Textile Recycling Practices and Challenges. Textiles, 2(1), (2022) 174–188. https://doi.org/10.3390/textiles2010010
  6. E.M. Aizenshtein, Production and use of chemical fibers in 2010. Fibre Chemistry, 43(6), (2012) 395-405. https://doi.org/10.1007/s10692-012-9372-1
  7. M. Krifa, S. Stewart Stevens, Cotton Utilization in Conventional and Non-Conventional Textiles-A Statistical Review. Agricultural Sciences, 7(10), (2016) 747–758. http://dx.doi.org/10.4236/as.2016.710069
  8. G. Velmurugan, K. Babu, M. Nagaraj, A.J.P. Kumar, Investigations of Flame Retardancy, Mechanical and Thermal Properties of Woven Hemp/PP Hybrid Composite for Insulating Material Reinforced with Synthetic Silicon and Zinc Oxides. Silicon,15, (2023) 4875–4888. https://doi.org/10.1007/s12633-023-02408-4
  9. G. Velmurugan, V. Siva Shankar, M. Kalil Rahiman, D. Elil Raja, M. Nagaraj, T.J. Nagalakshmi, Experimental Investigation of High Filler Loading of SiO2 on the Mechanical and Dynamic Mechanical Analysis of Natural PALF fibre-Based Hybrid Composite. Silicon, 15, (2023). 5587–5602. https://doi.org/10.1007/s12633-023-02464-w
  10. P. Grammelis, N. Margaritis, P. Dallas, D. Rakopoulos, G. Mavrias, A review on management of end of life tires (Elts) and alternative uses of textile fibers. Energies, 14(3), (2021) 571. https://doi.org/10.3390/en14030571
  11. M.N. Rao, R. Sultana, S.H. Kota, Chapter 2 - Municipal Solid Waste. Solid and Hazardous Waste Management, (2017) 3-120. https://doi.org/10.1016/B978-0-12-809734-2.00002-X
  12. M. Jones, A. Mautner, S. Luenco, A. Bismarck, S. John, Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design, 187, (2020) 108397. https://doi.org/10.1016/j.matdes.2019.108397
  13. H. Meziane, M. Laita, K. Azzaoui, A. Boulouiz, M. Neffa, R. Sabbahi, A.B.D. Nandiyanto, A. Elidrissi, N. Abidi, M. Siaj, Nanocellulose fibers: A Review of Preparation Methods, Characterization Techniques, and Reinforcement Applications. Moroccan Journal of Chemistry, 12(1), (2024) 1-448. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i1.44573
  14. G.Y. Nenkov, Shifting focus in the fight against core environmental challenges. Journal of the Academy of Marketing Science, (2024) 1–6. https://doi.org/10.1007/s11747-023-01001-w
  15. S. Gita, A. Hussan, T.G. Choudhury, Impact of textile dyes waste on aquatic environments and its treatment. Ecology and Environment, 35(3c), (2017) 2349–2353.
  16. V. Ganesan, V. Shanmugam, V. Alagumalai, B. Kaliyamoorthy, O. Das, M. Misra, Optimisation of mechanical behaviour of Calotropis gigantea and Prosopis juliflora natural fibre-based hybrid composites by using Taguchi-Grey relational analysis. Composites Part C: Open Access, 13, (2024) 100433. https://doi.org/10.1016/j.jcomc.2024.100433
  17. A. Azanaw, B. Birlie, B. Teshome, M. Jemberie, Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6, (2022) 100230. https://doi.org/10.1016/j.cscee.2022.100230
  18. N. Lakshmaiya, V. Ganesan, P. Paramasivam, S. Dhanasekaran, Influence of Biosynthesized Nanoparticles Addition and Fibre Content on the Mechanical and Moisture Absorption Behaviour of Natural Fibre Composite. Applied Sciences, 12(24), (2022) 13030. https://doi.org/10.3390/app122413030
  19. R. Mia, M. Selim, A.M. Shamim, M. Chowdhury, S. Sultana, M. Armin, M. Hossain, R. Akter, S. Dey, H. Naznin, Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. Journal of Textile Engineering & Fashion Technology, 5(4), (2019) 220–226. https://doi.org/10.15406/jteft.2019.05.00205
  20. V. Kumar, P. Patil, & C. Sundaramoorthy, Cotton and Man-made Textile Sector in India-A Curtain Raiser and Relevant Environment Issues. Cotton Research Journal, 9(1&2), (2021).
  21. S.M. Imtiazuddin, M. Mumtaz, K.A. Mallick, Pollutants of wastewater characteristics in textile industries. Journal of Basic & Applied Sciences, 8(2), (2012) 554–556. https://doi.org/10.6000/19275129.2012.08.02.47
  22. K. Slater, (2003) Environmental impact of textiles: production, processes and protection. Woodhead Publishing Ltd, Cambridge, England. https://doi.org/10.1533/9781855738645
  23. N. Colin, A. Maceda-Veiga, N. Flor-Arnau, J. Mora, P. Fortuño, C. Vieira, N. Prat, J. Cambra, A. De Sostoa, Ecological impact and recovery of a Mediterranean river after receiving the effluent from a textile dyeing industry. Ecotoxicology and Environmental Safety, 132, (2016) 295–303. https://doi.org/10.1016/j.ecoenv.2016.06.017
  24. N. Athira, D.S. Jaya, The Use of Fish Biomarkers for Assessing Textile Effluent Contamination of Aquatic Ecosystems: A Review. Nature Environment & Pollution Technology, 17(1), (2018) 25-34.
  25. [T. Islam, M.R. Repon, T. Islam, Z. Sarwar, M.M. Rahman, Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. Environmental Science and Pollution Research, 30(4), (2023) 9207–9242. https://doi.org/10.1007/s11356-022-24398-3
  26. V. Ganesan, B. Kaliyamoorthy, Utilization of Taguchi Technique to Enhance the Interlaminar Shear Strength of Wood Dust Filled Woven Jute Fiber Reinforced Polyester Composites in Cryogenic Environment. Journal of Natural Fibers, 19(6), (2022) 1990-2001. https://doi.org/10.1080/15440478.2020.1789021
  27. G. Sandin, G.M. Peters, Environmental impact of textile reuse and recycling–A review. Journal of Cleaner Production, 184, (2018) 353–365. https://doi.org/10.1016/j.jclepro.2018.02.266
  28. J.J. Lu, H. Hamouda, Current status of fiber waste recycling and its future. Advanced Materials Research. 878, (2014) 122-131. https://doi.org/10.4028/www.scientific.net/AMR.878.122
  29. T. Toprak, P. Anis, Textile industry’s environmental effects and approaching cleaner production and sustainability, an overview. Journal of Textile Engineering & Fashion Technology, 2(4), (2017) 429–442. https://doi.org/10.15406/jteft.2017.02.00066
  30. S. Sekar, S. Suresh Kumar, S. Vigneshwaran, G. Velmurugan, Evaluation of Mechanical and Water Absorption Behavior of Natural Fiber-Reinforced Hybrid Biocomposites. Journal of Natural Fibers, 19(5), (2020) 1772-1782. https://doi.org/10.1080/15440478.2020.1788487
  31. M. Yusuf, (2019) Synthetic dyes: a threat to the environment and water ecosystem. Textiles and Clothing, 11–26. https://doi.org/10.1002/9781119526599.ch2
  32. P.S. Kumar, A. Saravanan, (2017) Sustainable wastewater treatments in textile sector. In Sustainable fibres and textiles. Woodhead Publishing, 323–346. https://doi.org/10.1016/B978-0-08-102041-8.00011-1
  33. S. Yousef, M. Tatariants, M. Tichonovas, Z. Sarwar, I. Jonuškienė, L. Kliucininkas, A new strategy for using textile waste as a sustainable source of recovered cotton. Resources, Conservation and Recycling, 145, (2019) 359–369. https://doi.org/10.1016/j.resconrec.2019.02.031
  34. K. Sharma, V. Khilari, B.U. Chaudhary, A.B. Jogi, A.B. Pandit, R.D. Kale, Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties. Waste Management, 107, (2020) 227–234. https://doi.org/10.1016/j.wasman.2020.04.011
  35. M. Anantharaman, (2024) Recycling Class: The Contradictions of Inclusion in Urban Sustainability. MIT Press, Cambridge. https://doi.org/10.7551/mitpress/14972.001.0001
  36. V. Alagumalai, V. Shanmugam, N.K. Balasubramanian, Y. Krishnamoorthy, V. Ganesan, M. Försth, G. Sas, F. Berto, A. Chanda, O. Das, Impact response and damage tolerance of hybrid glass/kevlar-fibre epoxy structural composites. Polymers, 13(16), (2021) 2591. https://doi.org/10.3390/polym13162591
  37. P. Athanasopoulos, A. Zabaniotou, Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review. Science of the Total Environment, 834, (2022) 155387. https://doi.org/10.1016/j.scitotenv.2022.155387
  38. M.T. Halimi, M. Ben Hassen, F. Sakli, Cotton waste recycling: Quantitative and qualitative assessment. Resources, Conservation and Recycling, 52(5), (2008) 785–791. https://doi.org/10.1016/j.resconrec.2007.11.009
  39. R.E. Vera, F. Zambrano, A. Suarez, A. Pifano, R. Marquez, M. Farrell, M. Ankeny, H. Jameel, R. Gonzalez, Transforming textile wastes into biobased building blocks via enzymatic hydrolysis: A review of key challenges and opportunities. Cleaner and Circular Bioeconomy, 3, (2022) 100026. https://doi.org/10.1016/j.clcb.2022.100026
  40. C.H. Kuo, P.J. Lin, Y.Q. Wu, L.Y. Ye, D.J. Yang, C.J. Shieh, C.K. Lee, Simultaneous Saccharification and Fermentation of Waste Textiles for Ethanol Production. BioResources, 9(2), (2014) 2866–2875. https://doi.org/10.15376/biores.9.2.2866-2875
  41. I. Wojnowska-Baryła, K. Bernat, M. Zaborowska, Strategies of Recovery and Organic Recycling Used in Textile Waste Management. International Journal of Environmental Research and Public Health, 19(10), (2022) 5859. https://doi.org/10.3390/ijerph19105859
  42. A. Jeihanipour, K. Karimi, C. Niklasson, M.J. Taherzadeh, A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Management, 30(12), (2010) 2504–2509. https://doi.org/10.1016/j.wasman.2010.06.026
  43. B. Piribauer, A. Bartl, Textile recycling processes, state of the art and current developments: A mini review. Waste Management and Research, 37(2), (2019) 112–119. https://doi.org/10.1177/0734242X18819277
  44. F. Quartinello, S. Vecchiato, S. Weinberger, K. Kremenser, L. Skopek, A. Pellis, G.M. Guebitz, Highly selective enzymatic recovery of building blocks fromwool-cotton-polyester textile waste blends. Polymers, 10(10), (2018) 1107. https://doi.org/10.3390/polym10101107
  45. M. Gericke, A.J.R. Amaral, T. Budtova, P. De Wever, T. Groth, T. Heinze, H. Höfte, A. Huber, O. Ikkala, J. Kapuśniak, R. Kargl, J.F. Mano, M. Másson, P. Matricardi, B.Medronho, M. Norgren, T. Nypelo, L. Nystrom, A. Roig, M. Sauer, P. Fardim, The European Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources. Carbohydrate Polymers, 326, (2024) 121633. https://doi.org/10.1016/j.carbpol.2023.121633
  46. V.K. Balasubramanian, J.B. Muthuramalingam, Y.-P. Chen, J.-Y. Chou, Recent trends in lactic acid-producing microorganisms through microbial fermentation for the synthesis of polylactic acid. Archives of Microbiology, 206, (2024) 31. https://doi.org/10.1007/s00203-023-03745-z
  47. K. Steiner, V. Leitner, F. Zeppetzauer, D. Ostner, C. Burgstaller, H. Rennhofer, A. Bartl, D. Ribitsch, G.M. Guebitz, Optimising chemo-enzymatic separation of polyester cellulose blends. Resources, Conservation and Recycling, 202, (2024) 107369. https://doi.org/10.1016/j.resconrec.2023.107369
  48. C. Dourado Fernandes, B.F. Oechsler, C. Sayer, D. de Oliveira, P.H. Hermes de Araújo, Enzymatic Synthesis of Hydroxy-Functionalized Glycerol-Based Polyesters: A Study of Functionalization, Regioselectivity Control, and Catalyst Reuse. Macromolecules, 57, (2024) 456–469. https://doi.org/10.1021/acs.macromol.3c01533
  49. P.C. Nath, R. Sharma, S. Debnath, P.K. Nayak, R. Roy, M. Sharma, B.S. Inbaraj, K. Sridhar, Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines. International Journal of Biological Macromolecules, 259, (2024) 129129. https://doi.org/10.1016/j.ijbiomac.2023.129129
  50. V.S. Shankar, G. Velmurugan, D.E. Raja, T. Manikandan, S.S. Kumar, J. Singh, M. Nagaraj, A.J.P. Kumar, A Review on the Development of Silicon and Silica Based Nano Materials in the Food Industry. Silicon, 16, (2023) 979–988. https://doi.org/10.1007/s12633-023-02748-1
  51. R. Liang, G. Hota, (2013) Fiber-reinforced polymer (FRP) composites in environmental engineering applications. In Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, Woodhead Publishing, 410–468. https://doi.org/10.1533/9780857098955.2.410
  52. K. Subramanian, S.S. Chopra, E. Cakin, X. Li, C.S.K. Lin, Environmental life cycle assessment of textile bio-recycling–valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resources, Conservation and Recycling, 161, (2020) 104989. https://doi.org/10.1016/j.resconrec.2020.104989
  53. G. Velmurugan, V.S. Shankar, S.G. Shree, M. Abarna, B. Rupa, (2023) Review and Challenges of Green Polymer-Based Nanocomposite Materials. Lecture Notes in Mechanical Engineering, Springer, Singapore. https://doi.org/10.1007/978-981-99-2349-6_55
  54. N. Lakshmaiya, R. Surakasi, V.S. Nadh, C. Srinivas, S. Kaliappan, V. Ganesan, P. Paramasivam, S. Dhanasekaran, Tanning Wastewater Sterilization in the Dark and Sunlight Using Psidium guajava Leaf-Derived Copper Oxide Nanoparticles and Their Characteristics. ACS Omega, 8, (2023) 39680–39689. https://doi.org/10.1021/acsomega.3c05588
  55. M.A. Oliveira, J. Antonio, Animal-based waste for building acoustic applications: A review. Journal of Building Engineering, 84(1), (2024) 108430. https://doi.org/10.1016/j.jobe.2023.108430
  56. B. Liu, Y. Jiang, W. Zhang, J. Yan, L. Xie, P. Gurung, Enhancing performance and sustainability: CRB600H high-strength reinforcement in recycled concrete. Sustainable Materials and Technologies, 39, (2024) e00788. https://doi.org/10.1016/j.susmat.2023.e00788
  57. S. Khandaker, D. Akter, M. Hasan, A. Saifullah, H.M. Marwani, A. Islam, A.M. Asiri, M.M. Rahman, M.M. Hasan, T. Kuba, from industrial jute fibre spinning wastes to biofibre-reinforced plastics. Materials Chemistry and Physics, 313, (2024) 128586. https://doi.org/10.1016/j.matchemphys.2023.128586
  58. J. Zhang, S. Song, C. Zhang, C. Li, J. Xu, L. Xia, X. Liu, W. Xu, Fabrication of leather-like yarns using waste leather for textile application. Progress in Organic Coatings, 186, (2024) 108053. https://doi.org/10.1016/j.porgcoat.2023.108053
  59. G. Ramalingam, A.K. Priya, L. Gnanasekaran, S. Rajendran, T.K.A. Hoang, Biomass and waste derived silica, activated carbon and ammonia-based materials for energy-related applications–A review. Fuel, 355, (2024) 129490. https://doi.org/10.1016/j.fuel.2023.129490
  60. A. Benallel, A. Tilioua, M. Garoum, Development of thermal insulation panels bio-composite containing cardboard and date palm fibers. Journal of Cleaner Production, 434, (2024) 139995. https://doi.org/10.1016/j.jclepro.2023.139995
  61. N. Lakshmaiya, S. Kaliappan, P.P. Patil, V. Ganesan, J.A. Dhanraj, C. Sirisamphanwong, T. Wongwuttanasatian, S. Chowdhury, S. Channumsin, M. Channumsin, K. Techato, Influence of Oil Palm Nano Filler on Interlaminar Shear and Dynamic Mechanical Properties of Flax/Epoxy-Based Hybrid Nanocomposites under Cryogenic Condition. Coatings, 12(11), (2022) 1675. https://doi.org/10.3390/coatings12111675
  62. S.S. Rahman, S. Siddiqua, C. Cherian, Sustainable applications of textile waste fiber in the construction and geotechnical industries: A retrospect. Cleaner Engineering and Technology, 6, (2022) 100420. https://doi.org/10.1016/j.clet.2022.100420
  63. S.S. Ahmad, I.M.M. Mulyadi, N. Ibrahim, A.R. Othman, The application of recycled textile and innovative spatial design strategies for a recycling centre exhibition space. Procedia-Social and Behavioral Sciences, 234, (2016) 525–535. https://doi.org/10.1016/j.sbspro.2016.10.271
  64. D. Arunkumar, A. Latha, A.S. Kumar, S.J. Singh, G. Velmurugan, M. Nagaraj, Experimental Investigations of Flammability, Mechanical and Moisture Absorption Properties of Natural Flax / NanoSiO2 Based Hybrid Polypropylene Composites. Silicon, 15, (2023) 7621–7637. https://doi.org/10.1007/s12633-023-02611-3
  65. P. Sadrolodabaee, J. Claramunt, M. Ardanuy, A. de la Fuente, Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications. Case Studies in Construction Materials, 14, (2021) e00492. https://doi.org/10.1016/j.cscm.2021.e00492
  66. P.K. Sarangi, R.K. Srivastava, U.K. Sahoo, A.K. Singh, J. Parikh, S. Bansod, G. Parsai, M. Luqman, K.P. Shadangi, D. Diwan, Biotechnological innovations in nanocellulose production from waste biomass with a focus on pineapple waste, Chemosphere. 349, (2024) 140833. https://doi.org/10.1016/j.chemosphere.2023.140833
  67. M.B. Khot, K.S. Sridhar, D. Sethuram, A review on textile waste production, management and its applications in construction engineering field. International Journal of Structural Engineering, 13(2), (2023) 151–173. https://doi.org/10.1504/IJSTRUCTE.2023.130126
  68. S. Sanjeevi, V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D.J. Johnson, M. Shanmugam, A. Ayyanar, K. Naresh, R.E. Neisiany, O. Das, Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Scientific Reports, 11, (2021) 1-11. https://doi.org/10.1038/s41598-021-92457-9
  69. D.G.K. Dissanayake, D.U. Weerasinghe, Fabric waste recycling: A systematic review of methods, applications, and challenges. Materials Circular Economy, 3, (2021) 1–20. https://doi.org/10.1007/s42824-021-00042-2
  70. P.K. Mishra, A.M.D. Izrayeel, B.K. Mahur, A. Ahuja, V.K. Rastogi, A comprehensive review on textile waste valorization techniques and their applications, Environmental Science and Pollution Research, 29, (2022) 65962–65977. https://doi.org/10.1007/s11356-022-22222-6
  71. K.H.D. Tang, State of the Art in Textile Waste Management: A Review. Textiles, 3(4), (2023) 454-467. https://doi.org/10.3390/textiles3040027
  72. N.P. Tran, C. Gunasekara, D.W. Law, S. Houshyar, S. Setunge, A. Cwirzen, Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste. Journal of Sustainable Cement-Based Materials, 11(1), (2022) 28-42. https://doi.org/10.1080/21650373.2021.1875273
  73. M. Matheswaran, P. Suresh, G. Velmurugan, M. Nagaraj, Evaluation of Agrowaste/Nanoclay/SiO2-Based Blended Nanocomposites for Structural Applications: Comparative Physical and Mechanical Properties, Silicon. 15, (2023) 7095-7108. https://doi.org/10.1007/s12633-023-02570-9
  74. S. Mehdipour-Ataei, E. Aram, High-end applications of unsaturated polyester composites. Applications of Unsaturated Polyester Resins, (2023) 421-439. https://doi.org/10.1016/B978-0-323-99466-8.00009-5
  75. B. Sangmesh, N. Patil, K.K. Jaiswal, T.P. Gowrishankar, K.K. Selvakumar, M.S. Jyothi, R. Jyothilakshmi, S. Kumar, Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review. Construction and Building Materials, 368, (2023) 130457. https://doi.org/10.1016/j.conbuildmat.2023.130457
  76. P. Chaudhary, S. Bansal, B.B. Sharma, S. Saini, A. Joshi, Waste biomass-derived activated carbons for various energy storage device applications: A review. Journal of Energy Storage, 78, (2024) 109996. https://doi.org/10.1016/j.est.2023.109996
  77. G. Velmurugan, K. Babu, Statistical analysis of mechanical properties of wood dust filled Jute fiber based hybrid composites under cryogenic atmosphere using Grey-Taguchi method. Materials Research Express, 7(6), (2020). https://doi.org/10.1088/2053-1591/ab9ce9
  78. R. Kumar, T. Singh, H. Singh, Solid waste-based hybrid natural fiber polymeric composites. Journal of Reinforced Plastics and Composites, 34(16), (2015) 1979–1985. https://doi.org/10.1177/0731684415588551
  79. G. Velmurugan, L. Natrayan, Experimental investigations of moisture diffusion and mechanical properties of interply rearrangement of glass/Kevlar-based hybrid composites under cryogenic environment. Journal of Materials Research and Technology, 23, (2023) 4513–4526. https://doi.org/10.1016/j.jmrt.2023.02.089
  80. V. Ganesan, V. Shanmugam, B. Kaliyamoorthy, S. Sanjeevi, S.K. Shanmugam, V. Alagumalai, Y. Krishnamoorthy, M. Försth, G. Sas, S.M.J. Razavi, O. Das, Optimisation of mechanical properties in saw-dust/woven-jute fibre/polyester structural composites under liquid nitrogen environment using response surface methodology. Polymers, 13(15), (2021) 2471. https://doi.org/10.3390/polym13152471
  81. P. Behera, M.T. Noman, M. Petru, Enhanced mechanical properties of eucalyptus-basalt-based hybrid-reinforced cement composites. Polymers, 12(12), (2020) 2837. https://doi.org/10.3390/polym12122837