This study employs computational simulations to comprehensively investigate the molecular properties of 1,4-Dinitrosopiperazine-2-carboxylic acid. Through rigorous analysis, the research explores the compound's structural characteristics, vibrational assignments, chemical shifts, electronic properties, donor-acceptor interactions, Mulliken atomic charges, molecular electrostatic potential surface (MESP), and thermodynamic parameters. The findings provide intricate insights into the behavior of the compound, unveiling potential applications in diverse chemical contexts. This thorough examination contributes significantly to our understanding of the fundamental properties of 1,4-Dinitrosopiperazine-2-carboxylic acid, offering invaluable knowledge for both further research endeavors and practical applications. The detailed elucidation of these properties holds promise for advancements in various fields, from pharmaceuticals to materials science, marking a significant stride towards harnessing the full potential of this compound in contemporary chemistry.


Carboxylic acid, Piperazine, DFT, NBO, HOMO-LUMO, MESP,


Download data is not yet available.


  1. C.L. Allen, A.R. Chhatwal, J.M. Williams, Direct amide formation from unactivated carboxylic acids and amines. Chemical Communications, 48(5), (2012) 666-668. https://doi.org/10.1039/C1CC15210F
  2. A.S. Kalgutkar, J.S. Daniels, Carboxylic acids and their bioisosteres. Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET. Royal Society of Chemistry, 9, (2010) 99-167.
  3. C. Florindo, F.S. Oliveira, L.P. Rebelo, Fernandes, A.M, Marrucho, I.M. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chemistry & Engineering, 2(10) (2014) 2416-25. https://doi.org/10.1021/sc500439w
  4. M.K. Akhtar, N.J. Turner, P.R. Jones, Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proceedings of the National Academy of Sciences, 110(1) (2013) 87-92. https://doi.org/10.1073/pnas.1216516110
  5. Y. Huang, T. Ma, Q. Wang, C. Guo, Synthesis of biobased flame-retardant carboxylic acid curing agent and application in wood surface coating. ACS Sustainable Chemistry & Engineering, 7(17), (2019) 14727-14738. https://doi.org/10.1021/acssuschemeng.9b02645
  6. C. Ballatore, D.M. Huryn, A.B. Smith, 3rd. Carboxylic acid (bio)isosteres in drug design. ChemMedChem. 8(3), (2013) 385-395. https://doi.org/10.1002/cmdc.201200585
  7. N.A. Fine, M.J. Goldman, P.T. Nielse, G.T. Rochelle, Managing n-nitrosopiperazine and dinitrosopiperazine. Energy procedia, 37 (2013) 273-284. https://doi.org/10.1016/j.egypro.2013.05.112
  8. A.K. Rathi, R. Syed, H.S. Shin, R.V. Patel, Piperazine derivatives for therapeutic use: a patent review (2010-present). Expert opinion on therapeutic patents, 26(7), (2016) 777-797. https://doi.org/10.1080/13543776.2016.1189902
  9. F. Tang, F. Zou, Z. Peng, D. Huang, Y. Wu, Y. Chen, C. Duan, Y. Cao, W. Mei, X. Tang, Z. Dong, N,N′-Dinitrosopiperazine-mediated Ezrin Protein Phosphorylation via Activation of Rho Kinase and Protein Kinase C Is Involved in Metastasis of Nasopharyngeal Carcinoma 6-10B Cells. Journal of Biological Chemistry, 286(42), (2011) 36956-36967. https://doi.org/10.1074/jbc.M111.259234
  10. Y. Li, J. Lu, S. Zhou, W. Wang, G. Tan, Z. Zhang, Z. Dong, T. Kang, F. Tang, Clusterin induced by N, N′-Dinitrosopiperazine is involved in nasopharyngeal carcinoma metastasis. Oncotarget, 7(5), (2016) 5548-5563. https://doi.org/10.18632/oncotarget.6750
  11. Y. Li, K. Ju, W. Wang, Z. Liu, H. Xie, Y. Jiang, G. Jiang, J. Lu, Z. Dong, F. Tang, Dinitrosopiperazine‐decreased PKP3 through upregulating miR‐149 participates in nasopharyngeal carcinoma metastasis. Molecular carcinogenesis, 57(12), (2018) 1763-1779. https://doi.org/10.1002/mc.22895
  12. Z. Peng. N. Liu, D. Huang, C. Duan, Y. Li, X. Tang, W. Mei, F. Zhu, F. Tang, N, N'-dinitrosopiperazine–mediated heat-shock protein 70-2 expression is involved in metastasis of nasopharyngeal carcinoma. PLoS one, 8(5) (2013) e62908. https://doi.org/10.1371/journal.pone.0062908
  13. D. Huang, Y. Li, N. Liu, Z. Zhang, Z. Peng, C. Duan, X. Tang, G. Tan, G. Yan, F. Tang, Identification of novel signaling components in N, N’-Dinitrosopiperazine-mediated metastasis of nasopharyngeal Carcinoma by quantitative phosphoproteomics. Bmc Cancer, 14, (2014) 1-15. https://doi.org/10.1186/1471-2407-14-243
  14. G. Tan, X. Tang, D. Huang, Y. Li, N. Liu, Z. Peng, Z. Zhang, C. Duan, J. Lu, G. Yan, F. Tang, Dinitrosopiperazine-mediated phosphorylated-proteins are involved in nasopharyngeal carcinoma metastasis. International Journal of Molecular Sciences, 15(11), (2014) 20054-20071. https://doi.org/10.3390/ijms151120054
  15. N. Yaghmaeiyan, A. Bamoniri, M. Mirzaei, (2022). The stereochemistry study of N, N-dinitrosopiperazine using 1H NMR technique. Preprint https://doi.org/10.21203/rs.3.rs-2071349/v1
  16. M.J. Frisch, et al., (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  17. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review, 140(4A), (1965) A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
  18. A.D. Becke, Density functional thermo chemistry – III: The role of exact exchange. The Journal of Chemical Physics, 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913
  19. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37 (1988) 785-789. https://doi.org/10.1103/PhysRevB.37.785
  20. W.J. Hehre, R. Ditchfield, J.A. Pople, Self-Consistent Molecular Orbital Meth- ods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 56(5), (1972) 2257–2261. https://doi.org/10.1063/1.1677527
  21. J.R. Cheeseman, G.W. Trucks, T.A. Keith, & M.J. Frisch, A comparison of models for calculating nuclear magnetic resonance shielding tensors. The Journal of Chemical Physics, 104 (1996) 5497–5509. https://doi.org/10.1063/1.471789
  22. M. Petersilka, U.J. Gossman, E.K.U. Gross, Excitation energies from timed-ependent density-functional theory. Physical Review Letters, 76 (1966) 1212-1215. https://doi.org/10.1103/PhysRevLett.76.1212
  23. E. Runge, E.K.U. Gross, Density functional theory for time-dependent systems. Physical Review Letters, 52 (1984) 997. https://doi.org/10.1103/PhysRevLett.52.997
  24. G.A. Zhurko, D.A. Zhurko, Chemcraft Program Version 1.6 (Build 315), (2009).
  25. N.B. Arslan, N. Özdemir, O. Dayan, N. Dege, M. Koparır, P. Koparır, H. Muğlu, Direct and solvent-assisted thione–thiol tautomerism in 5-(thiophen-2-yl)-1, 3, 4-oxadiazole-2 (3H)-thione: Experimental and molecular modeling study. Chemical Physics, 439, (2014) 1-11. https://doi.org/10.1016/j.chemphys.2014.05.006
  26. M. Shkir, Investigation on the key features of L-Histidinium 2-nitrobenzoate (LH2NB) for optoelectronic applications: a comparative study. Journal of King Saud University-Science, 29 (1), (2017) 70-83. https://doi.org/10.1016/j.jksus.2016.03.002
  27. S. Omar, S. Mohd, M. Ajmal Khan, Z. Ahmad, S. AlFaify, A comprehensive study on molecular geometry, optical, HOMO-LUMO, and nonlinear properties of 1, 3-diphenyl-2-propen-1-ones chalcone and its derivatives for optoelectronic applications: a computational approach. Optik, 204 (2020) 164172. https://doi.org/10.1016/j.ijleo.2020.164172
  28. S.D. Kanmazalp, M. Macit, N. Dege, Hirshfeld surface, crystal structure and spectroscopic characterization of (E)-4-(diethylamino)-2-((4-phenoxyphenylimino) methyl) phenol with DFT studies. Journal of Molecular Structure, 1179, (2019) 181-191. https://doi.org/10.1016/j.molstruc.2018.11.001
  29. B. Himmi, S.A. Brandán, Y. Sert, A.A. Kawther, N. Dege, E.B. Cinar, A.E. Louzi, K. Bougrin, K. Karrouchi, A quinoline-benzotriazole derivative: Synthesis, crystal structure and characterization by using spectroscopic, DFT and molecular docking methods. Results in Chemistry, 5 (2023) 100916. https://doi.org/10.1016/j.rechem.2023.100916
  30. F. El Kalai, E.B. Çınar, Y. Sert, M. Alhaji Isa, C.H. Lai, F. Buba, N. Benchat, K. Karrouchi, Synthesis, crystal structure, DFT, Hirshfeld surface analysis, energy framework, docking and molecular dynamic simulations of (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3 (2H)-one as anticancer agent. Journal of Biomolecular Structure and Dynamics, (2023). 1-20. https://doi.org/10.1080/07391102.2022.2164796
  31. S. Selvaraj, In Silico Studies on the Molecular Geometry, FMO, Mulliken Charges, MESP, ADME and Molecular Docking Prediction of Pyrogallol Carboxaldehydes as Potential Anti-tumour Agents. Physical Chemistry Research, 12(2), (2024) 305-320. https://doi.org/10.22036/PCR.2023.402835.2359
  32. M. Arıcı, O.Z. Yeşilel, E. Acar, N. Dege, Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids, Polyhedron, 127, (2017) 293-301. https://doi.org/10.1016/j.poly.2017.02.013
  33. S. Kansız, N. Dege, Synthesis, crystallographic structure, DFT calculations and Hirshfeld surface analysis of a fumarate bridged Co (II) coordination polymer. Journal of Molecular Structure, 1173 (2018) 42-51. https://doi.org/10.1016/j.molstruc.2018.06.071
  34. K. Guna, P. Sakthivel, I. Ragavan, A. Arunkumar, P.M. Anbarasan, M. Shkir, An experimental and computational analysis on 2, 6-diamine-7H-purine ligand with spectroscopic, AIM, NLO and biological activity. Optics & Laser Technology, 168 (2024) 109872. https://doi.org/10.1016/j.optlastec.2023.109872
  35. P. Rajkumar, S. Selvaraj, R. Suganya, M. Kesavan, G. Serdaroğlu, S. Gunasekaran, S. Kumaresan, Experimental and theoretical investigations on electronic structure of 5-(hydroxymethyl)-2-furaldehyde: An antisickling agent identified from terminalia bellirica. Chemical Data Collections, 29, (2020) 100498. https://doi.org/10.1016/j.cdc.2020.100498
  36. Y. Ait Elmachkouri, Y. Sert, E. Irrou, E. H. Anouar, H. Ouachtak, J.T. Mague, N.K. Sebbar. M.L. Taha, Synthesis, X-Ray Diffraction, Spectroscopic Characterization, Hirshfeld Surface Analysis, Molecular Docking Studies, and DFT Calculation of New Pyrazolone Derivatives. Polycyclic Aromatic Compounds, (2023) 1-22. https://doi.org/10.1080/10406638.2023.2219804
  37. G. Serdaroglu, Experimental and theoretical spectroscopic studies of the electronic structure of 2-ethyl-2-phenylmalonamide. Physical Chemistry Research, 10(3), (2022) 333-344.
  38. D. Kattan, M.A. Palafox, S.K. Rathor, V.K. Rastogi, A DFT analysis of the molecular structure, vibrational spectra and other molecular properties of 5-nitrouracil and comparison with uracil. Journal of Molecular Structure, 1106, (2016) 300-315. https://doi.org/10.1016/j.molstruc.2015.10.096
  39. M.A. Palafox, D. Bhat, Y. Goyal, S. Ahmad, I.H. Joe, V.K. Rastogi, FT-IR and FT-Raman spectra, MEP and HOMO–LUMO of 2, 5-dichlorobenzonitrile: DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, (2015) 464-472. https://doi.org/10.1016/j.saa.2014.09.058
  40. K. Subashini, S. Periandy, Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation, molecular docking and molecular simulation dynamics on 1-Methyl-3-Phenylpiperazine. Journal of Molecular Structure, 1143 (2017) 328-343. https://doi.org/10.1016/j.molstruc.2017.04.016
  41. E. Jaziri, H. Louis, C. Gharbi, F. Lefebvre, W. Kaminsky, E.C. Agwamba, T.C. Egemonye, T.O. Unimuke, O.J. Ikenyirimba, G.E. Mathias, C.B. Nasr, L. Khedhiri, Investigation of crystal structures, spectral (FT-IR and NMR) analysis, DFT, and molecular docking studies of novel piperazine derivatives as antineurotic drugs. Journal of Molecular Structure, 1278 (2023) 134937. https://doi.org/10.1016/j.molstruc.2023.134937
  42. S. Selvaraj, A.R. Kumar, T. Ahilan, M. Kesavan, S. Gunasekaran, S. Kumaresan, Multi spectroscopic and computational investigations on the electronic structure of oxyclozanide. Journal of the Indian Chemical Society, 99(10), (2022) 100676. https://doi.org/10.1016/j.jics.2022.100676
  43. N.E. Safronov, I.P. Kostova, M.A. Palafox, N.P. Belskaya, Combined NMR Spectroscopy and Quantum-Chemical Calculations in Fluorescent 1, 2, 3-Triazole-4-carboxylic Acids Fine Structures Analysis. International Journal of Molecular Sciences, 24(10), (2023) 8947. https://doi.org/10.3390/ijms24108947
  44. N. Uludag, G. Serdaroğlu, P. Sugumar, P. Rajkumar, N. Colak, E. Ercag, Synthesis of thiophene derivatives: Substituent effect, antioxidant activity, cyclic voltammetry, molecular docking, DFT, and TD-DFT calculations. Journal of Molecular Structure, 1257, (2022)132607. https://doi.org/10.1016/j.molstruc.2022.132607
  45. S. Sundari, A. Muthuraja, S. Chandra, P. Rajkumar, Spectroscopic analysis (FT-IR/FT-Raman), electronic (UV–visible), NMR and docking on 4-methoxyphenylboronic acid (4MPBA) by DFT calculation. Molecular Crystals and Liquid Crystals, 755(1), (2023) 23-40. https://doi.org/10.1080/15421406.2022.2100965
  46. A.R. Kumar, S. Selvaraj, P. Anthoniammal, R.J. Ramalingam, R. Balu, P. Jayaprakash, G.P.S. Mol, Comparison of spectroscopic, structural, and molecular docking studies of 5-nitro-2-fluoroaniline and 2-nitro-5-fluoroaniline: An attempt on fluoroaniline isomers. Journal of Fluorine Chemistry, 270, (2023) 110167. https://doi.org/10.1016/j.jfluchem.2023.110167
  47. A. Asha, P. Jayaprakash, S. Selvaraj, D.P. Matharasi, P. Rajkumar, Growth, spectral and quantum chemical investigations on N-butyl-4-nitroaniline single crystal for nonlinear optical and optoelectronic device applications. Journal of Materials Science: Materials in Electronics, 34(10), (2023) 895. https://doi.org/10.1007/s10854-023-10292-2