The need to discover novel methods for creating sustainable materials is growing due to the depletion of the Earth's resources and increasing environmental concerns. Several studies have focused on the handling of agricultural waste in an attempt to mitigate the ecological issues associated with agricultural debris removal. Large volumes of agricultural waste are generated annually, posing a significant challenge from both ecological and financial perspectives. In alignment with the principles of a sustainable economy, such waste can be employed as supplementary ingredients to produce high-value goods. The utilization of organic waste from agriculture has become indispensable for the development of sustainable and lightweight biopolymer-based composites. This brief review delves into the expanding field of lightweight agronomic surplus biomass materials suitable for environmental applications. It places particular emphasis on the utilization of biopolymers in creating these materials. The study explores how agricultural waste biomass can be sustainably repurposed and transformed into eco-friendly composite materials. It examines the innovations, materials, and methods contributing to this ecological trend, with a focus on the potential environmental benefits. This review highlights the progress achieved in the development of these hybrids, drawing attention to the numerous ways in which environmentally friendly biopolymer-based materials can be utilized.


Biopolymers, Sustainable materials, Cellulose, Starch, Natural composites, Lightweight applications, Ecological Applications, Environmentally Friendly Composites,


Download data is not yet available.


  1. S. Nagappan, S.P. Subramani, S.K. Palaniappan, B. Mylsamy, Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites. Journal of Natural Fibers, 19 (2022) 6853–6864. https://doi.org/10.1080/15440478.2021.1932681
  2. M. Ali, A. Alabdulkarem, A. Nuhait, K. Al-Salem, G. Iannace, R. Almuzaiqer, Characteristics of agro waste fibers as new thermal insulation and sound absorbing materials: Hybrid of date palm tree leaves and wheat straw fibers. Journal of Natural Fibers, 19 (2022) 6576–6594. https://doi.org/10.1080/15440478.2021.1929647
  3. F. Ortega, F. Versino, O.V. López, M.A. García, Biobased composites from agro-industrial wastes and by-products. Emergent Materials, 5 (2022) 873–921. https://doi.org/10.1007/s42247-021-00319-x
  4. V.S. Shankar, G. Velmurugan, D.E. Raja, T. Manikandan, S.S. Kumar, J. Singh, M. Nagaraj, A.J.P. Kumar, A Review on the Development of Silicon and Silica Based Nano Materials in the Food Industry. Silicon, (2023) 1–10. https://doi.org/10.1007/s12633-023-02748-1
  5. G. Velmurugan, S.S. Kumar, J.S. Chohan, R. Sathish, S.P. Selvan, S.A.M. Abraar, D.E. Raja, M. Nagaraj, S. Palani, Hybrid calotropis gigantea fibre-reinforced epoxy composites with SiO2’s longer-term moisture absorbable and its impacts on mechanical and dynamic mechanical properties. Materials Research Express, 10 (2023) 115302. https://doi.org/10.1088/2053-1591/ad0bc8
  6. A. Vinod, M.R. Sanjay, S. Siengchin, S. Fischer, Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: influence of surface modification techniques. Construction and Building Materials, 303 (2021) 124509. https://doi.org/10.1016/j.conbuildmat.2021.124509
  7. A. Karimah, M.R. Ridho, S.S. Munawar, D.S. Adi, R. Damayanti, B. Subiyanto, W. Fatriasari, A. Fudholi, A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 13 (2021) 2442–2458. https://doi.org/10.1016/j.jmrt.2021.06.014
  8. M.V. Madurwar, R.V. Ralegaonkar, S.A. Mandavgane, Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials, 38 (2013) 872–878. https://doi.org/10.1016/j.conbuildmat.2012.09.011
  9. G. Velmurugan, S.S. Kumar, J.S. Chohan, A.J.P. Kumar, T. Manikandan, D.E. Raja, K. Saranya, M. Nagaraj, P. Barmavatu, Experimental Investigations of Mechanical and Dynamic Mechanical Analysis of Bio-synthesized CuO/Ramie Fiber-Based Hybrid Biocomposite. Fibers and Polymers, (2023) 1–20. https://doi.org/10.1007/s12221-023-00432-0
  10. A. Verma, K. Joshi, A. Gaur, V.K. Singh, Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: Fabrication and experimental characterization. Journal of the Mechanical Behavior of Materials, 27 (2018) 1–16. https://doi.org/10.1515/jmbm-2018-2006
  11. K.K. Sadasivuni, P. Saha, J. Adhikari, K. Deshmukh, M.B. Ahamed, J.J. Cabibihan, Recent advances in mechanical properties of biopolymer composites: a review. Polymer Composites, 41 (2020) 32–59. https://doi.org/10.1002/pc.25356
  12. A. George, M.R. Sanjay, R. Srisuk, J. Parameswaranpillai, S. Siengchin, A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules, 154 (2020) 329–338. https://doi.org/10.1016/j.ijbiomac.2020.03.120
  13. J.R. Robledo-Ortíz, A.S. Martín del Campo, J.A. Blackaller, M.E. González-López, A.A. Pérez Fonseca, Valorization of sugarcane straw for the development of sustainable biopolymer-based composites. Polymers, 13 (2021) 3335. https://doi.org/10.3390/polym13193335
  14. G. Velmurugan, K. Babu, Statistical analysis of mechanical properties of wood dust filled Jute fiber based hybrid composites under cryogenic atmosphere using Grey-Taguchi method. Materials Research Express. 7 (2020). https://doi.org/10.1088/2053-1591/ab9ce9
  15. P. Zarrintaj, F. Seidi, M.Y. Azarfam, M.K. Yazdi, A. Erfani, M. Barani, N.P.S. Chauhan, N. Rabiee, T. Kuang, J. Kucinska-Lipka, M.R. Saeb, M. Mozafari, Biopolymer-based composites for tissue engineering applications: A basis for future opportunities, Composites Part B: Engineering. 258 (2023) 110701. https://doi.org/10.1016/j.compositesb.2023.110701
  16. R. Phiri, S.M. Rangappa, S. Siengchin, O.P. Oladijo, H.N. Dhakal, Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: a Review. Advanced Industrial and Engineering Polymer Research, 6 (2023) 436-450. https://doi.org/10.1016/j.aiepr.2023.04.004
  17. S. Adjei, S. Elkatatny, A highlight on the application of industrial and agro wastes in cement-based materials. Journal of Petroleum Science and Engineering, 195 (2020) 107911. https://doi.org/10.1016/j.petrol.2020.107911
  18. V. Ganesan, B. Kaliyamoorthy, Utilization of Taguchi Technique to Enhance the Interlaminar Shear Strength of Wood Dust Filled Woven Jute Fiber Reinforced Polyester Composites in Cryogenic Environment. Journal of Natural Fibers, (2020). https://doi.org/10.1080/15440478.2020.1789021
  19. M. Matheswaran, P. Suresh, G. Velmurugan, M. Nagaraj, Evaluation of Agrowaste/Nanoclay/SiO2-Based Blended Nanocomposites for Structural Applications: Comparative Physical and Mechanical Properties, Silicon. 15 (2023) 7095–7108. https://doi.org/10.1007/s12633-023-02570-9
  20. D. Arunkumar, A. Latha, S. Suresh Kumar, J.S. Chohan, G. Velmurugan & M. Nagaraj, Experimental Investigations of Flammability, Mechanical and Moisture Absorption Properties of Natural Flax / NanoSiO 2 Based Hybrid Polypropylene Composites. Silicon, 15 (2023) 7621–7637. https://doi.org/10.1007/s12633-023-02611-3
  21. J. Li, X. Hao, W. Gan, M.C.M. van Loosdrecht, Y. Wu, Recovery of extracellular biopolymers from conventional activated sludge: Potential, characteristics and limitation. Water Research, 205 (2021) 117706. https://doi.org/10.1016/j.watres.2021.117706
  22. M. Mahamaya, S.K. Das, K.R. Reddy, S. Jain, Interaction of biopolymer with dispersive geomaterial and its characterization: An eco-friendly approach for erosion control. Journal of Cleaner Production, 312 (2021) 127778. https://doi.org/10.1016/j.jclepro.2021.127778
  23. N.S.K. Gowthaman, H.N. Lim, T.R. Sreeraj, A. Amalraj, S. Gopi, Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects. Biopolymers and their Industrial Applications, (2021) 351–372. https://doi.org/10.1016/B978-0-12-819240-5.00015-8
  24. J. Joshi, S.V. Homburg, A. Ehrmann, Atomic force microscopy (AFM) on biopolymers and hydrogels for biotechnological applications-Possibilities and limits, Polymers. 14 (2022) 1267. https://doi.org/10.3390/polym14061267
  25. S. Sanjeevi, V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D.J. Johnson, M. Shanmugam, A. Ayyanar, K. Naresh, R.E. Neisiany, O. Das, Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Scientific Reports, 11 (2021) 1-11. https://doi.org/10.1038/s41598-021-92457-9
  26. S. Sekar, S. Suresh Kumar, S. Vigneshwaran, G. Velmurugan, Evaluation of mechanical and water absorption behavior of natural fiber-reinforced hybrid biocomposites. Journal of Natural Fibers, 19 (2022)1772-1782. https://doi.org/10.1080/15440478.2020.1788487
  27. B.E. Tokula, A.O. Dada, A.A. Inyinbor, K.S. Obayomi, O.S. Bello, U. Pal, Agro-waste based adsorbents as sustainable materials for effective adsorption of Bisphenol A from the environment: A review. Journal of Cleaner Production, 388 (2023) 135819. https://doi.org/10.1016/j.jclepro.2022.135819
  28. S.A. Varghese, H. Pulikkalparambil, K. Promhuad, A. Srisa, Y. Laorenza, L. Jarupan, T. Nampitch, V. Chonhenchob, N. Harnkarnsujarit, Renovation of Agro-Waste for sustainable food packaging: A Review. Polymers, 15 (2023) 648. https://doi.org/10.3390/polym15030648
  29. R. Shrivastava, N.K. Singh, Agro-wastes sustainable materials for wastewater treatment: Review of current scenario and approaches for India. Materials Today: Proceedings, 60 (2022) 552–558. https://doi.org/10.1016/j.matpr.2022.01.460
  30. S. Birania, S. Kumar, N. Kumar, A.K. Attkan, A. Panghal, P. Rohilla, R. Kumar, Advances in development of biodegradable food packaging material from agricultural and agro‐industry waste. Journal of Food Process Engineering, 45 (2022) e13930. https://doi.org/10.1111/jfpe.13930
  31. M. Iniguez-Moreno, M. Calderón-Santoyo, G. Ascanio, F.Z. Ragazzo-Calderón, R. Parra-Saldívar, J.A. Ragazzo-Sánchez, J.A. Ragazzo-Sánchez, Harnessing emerging technologies to obtain biopolymer from agro-waste: application into the food industry. Biomass Conversion and Biorefinery, (2023) 1–18. https://doi.org/10.1007/s13399-023-04785-7
  32. Y.G. TG, S. Ballupete Nagaraju, M. Puttegowda, A. Verma, S.M. Rangappa, S. Siengchin Biopolymer-Based Composites: An Eco-Friendly Alternative from Agricultural Waste Biomass. Journal of Composites Science, 7 (2023) 242. https://doi.org/10.3390/jcs7060242
  33. H.P.S.A. Khalil, E.B. Yahya, F. Jummaat, A.S. Adnan, N.G. Olaiya, S. Rizal, C.K. Abdullah, D. Pasquini, S. Thomas, Biopolymers based aerogels: A review on revolutionary solutions for smart therapeutics delivery. Progress in Materials Science, 131 (2023) 101014. https://doi.org/10.1016/j.pmatsci.2022.101014
  34. V. Ganesan, V. Shanmugam, B. Kaliyamoorthy, S. Sanjeevi, S.K. Shanmugam, V. Alagumalai, Y. Krishnamoorthy, M. Försth, G. Sas, S.M.J. Razavi, O. Das, Optimisation of mechanical properties in saw-dust/woven-jute fibre/polyester structural composites under liquid nitrogen environment using response surface methodology. Polymers, 13 (2021). https://doi.org/10.3390/polym13152471
  35. Y. Liu, S. Ahmed, D.E. Sameen, Y. Wang, R. Lu, J. Dai, S. Li, W. Qin, A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112 (2021) 532–546. https://doi.org/10.1016/j.tifs.2021.04.016
  36. S. Suresh Kumar, S. Thirumalai Kumaran, G. Velmurugan, A. Perumal, S. Sekar, M. Uthayakumar, Physical and mechanical properties of various metal matrix composites: A review. Materials Today: Proceedings, 50 (2021) 1022–1031. https://doi.org/10.1016/j.matpr.2021.07.354
  37. N. Lakshmaiya, S. Kaliappan, P.P. Patil, V. Ganesan, J.A. Dhanraj, C. Sirisamphanwong, T. Wongwuttanasatian, S. Chowdhury, S. Channumsin, M. Channumsin, K. Techato, Influence of Oil Palm Nano Filler on Interlaminar Shear and Dynamic Mechanical Properties of Flax/Epoxy-Based Hybrid Nanocomposites under Cryogenic Condition, Coatings. 12 (2022) 1675. https://doi.org/10.3390/coatings12111675
  38. S.B. Nagaraju, H.C. Priya, Y.G.T. Girijappa, M. Puttegowda, 9-Lightweight and sustainable materials for aerospace applications. Lightweight and Sustainable Composite Materials, Elsevier, (2023) 157–178. https://doi.org/10.1016/B978-0-323-95189-0.00007-X
  39. A. Das, T. Ringu, S. Ghosh, N. Pramanik, A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polymer Bulletin, 80 (2023) 7247–7312. https://doi.org/10.1007/s00289-022-04443-4
  40. J. Ma, J. He, X. Kong, J. Zheng, L. Han, Y. Liu, Z. Zhu, Z. Zhang, From agricultural cellulosic waste to food delivery packaging: A mini-review. Chinese Chemical Letters, 34 (2023) 107407. https://doi.org/10.1016/j.cclet.2022.04.005
  41. E. Padoan, E. Montoneri, G. Bordiglia, V. Boero, M. Ginepro, P. Evon, C. Vaca-Garcia, G. Fascella, M. Negre, Waste biopolymers for eco-friendly agriculture and safe food production. Coatings, 12 (2022) 239. https://doi.org/10.3390/coatings12020239
  42. Z. Ding, V. Kumar, T. Sar, S. Harirchi, A.M. Dregulo, R. Sirohi, R. Sindhu, P. Binod, X. Liu, Z. Zhang, M.J. Taherzadeh, M.K. Awasthi, Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. Bioresource Technology, (2022) 128058. https://doi.org/10.1016/j.biortech.2022.128058
  43. P. Choudhary, A. Pathak, P. Kumar, N. Sharma, Commercial production of bioplastic from organic waste–derived biopolymers viz-a-viz waste treatment: A minireview. Biomass Conversion and Biorefinery, (2022) 1–11. https://doi.org/10.1007/s13399-022-03145-1
  44. A. Agarwal, B. Shaida, M. Rastogi, N.B. Singh, Food packaging materials with special reference to biopolymers-properties and applications. Chemistry Africa, 6 (2023) 117–144. https://doi.org/10.1007/s42250-022-00446-w
  45. H. Rana, A. Sharma, S. Dutta, S. Goswami, Recent Approaches on the Application of Agro Waste Derived Biocomposites as Green Support Matrix for Enzyme Immobilization. Journal of Polymers and the Environment, 30 (2022) 4936–4960. https://doi.org/10.1007/s10924-022-02574-3
  46. X. Xie, Z. Zhou, Y. Yan, Flexural properties and impact behaviour analysis of bamboo cellulosic fibers filled cement based composites. Construction and Building Materials, 220 (2019) 403–414. https://doi.org/10.1016/j.conbuildmat.2019.06.029
  47. K.R. Sumesh, K. Kanthavel, V. Kavimani, Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. International Journal of Biological Macromolecules, 150 (2020) 775–785. https://doi.org/10.1016/j.ijbiomac.2020.02.118
  48. Y. Liu, J. Xie, N. Wu, Y. Ma, C. Menon, J. Tong, Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose, 26 (2019) 4707-4719. https://doi.org/10.1007/s10570-019-02429-6
  49. B. Aaliya, K.V. Sunooj, M. Lackner, Biopolymer composites: a review. International Journal of Biobased Plastics, 3 (2021) 40–84. https://doi.org/10.1080/24759651.2021.1881214
  50. J.X. Chan, J.F. Wong, A. Hassan, Z. Zakaria, 8 - Bioplastics from agricultural waste. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications, (2021)141–169. https://doi.org/10.1016/B978-0-12-819953-4.00005-7
  51. N.S.N. Arman, R.S. Chen, S. Ahmad, Review of state-of-the-art studies on the water absorption capacity of agricultural fiber-reinforced polymer composites for sustainable construction. Construction and Building Materials, 302 (2021) 124174. https://doi.org/10.1016/j.conbuildmat.2021.124174
  52. N. Lakshmaiya, V. Ganesan, P. Paramasivam, S. Dhanasekaran, Influence of Biosynthesized Nanoparticles Addition and Fibre Content on the Mechanical and Moisture Absorption Behaviour of Natural Fibre Composite. Applied Sciences, 12(24), (2022) 13030. https://doi.org/10.3390/app122413030
  53. Y. Zhou, J. Chen, X. Liu, J. Xu, Three/Four [Dimensional Printed PLA Nano/Microstructures: Crystallization Principles and Practical Applications. International Journal of Molecular Sciences, 24 (2023) 13691. https://doi.org/10.3390/ijms241813691
  54. R. Brunšek, D. Kopitar, I. Schwarz, P. Marasović, Biodegradation Properties of Cellulose Fibers and PLA Biopolymer. Polymers, 15(17) (2023) 3532. https://doi.org/10.3390/polym15173532
  55. S. Ramanadha reddy, N. Venkatachalapathi, A review on characteristic variation in PLA material with a combination of various nano composites. Materials Today: Proceedings, (2023). https://doi.org/10.1016/j.matpr.2023.04.616
  56. V. Ganesan, V. Shanmugam, V. Alagumalai, Composites Part C : Open Access Optimisation of mechanical behaviour of Calotropis gigantea and Prosopis juliflora natural fibre-based hybrid composites by using Taguchi-Grey relational analysis, Composites Part C: Open Access. 13 (2024) 100433. https://doi.org/10.1016/j.jcomc.2024.100433
  57. E. Finocchio, C. Moliner, A. Lagazzo, S. Caputo, E. Arato, Water absorption behavior and physico‐chemical and mechanical performance of PLA‐based biopolymers filled with degradable glass fibers. Journal of Applied Polymer Science, 140 (2023) e54578. https://doi.org/10.1002/app.54578
  58. T.A. Swetha, A. Bora, K. Mohanrasu, P. Balaji, R. Raja, K. Ponnuchamy, G. Muthusamy, A. Arun, A comprehensive review on polylactic acid (PLA)–Synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 234 (2023) 123715. https://doi.org/10.1016/j.ijbiomac.2023.123715
  59. G. Velmurugan, J.S. Chohan, S.A. Muhammed Abraar, R. Sathish, S. Senthil Murugan, M. Nagaraj, S. Suresh Kumar, V. Siva Shankar, D. Elil Raja, Investigation of Nano SiO2 Filler Loading on Mechanical and Flammability Properties of Jute-Based Hybrid Polypropylene Composites. Silicon, 15 (2023) 7247–7263. https://doi.org/10.1007/s12633-023-02578-1
  60. L. Natrayan, S. Kaliappan, B.S. Sethupathy, S. Sekar, P.P. Patil, G. Velmurugan, T. Tariku Olkeba, Effect of Mechanical Properties on Fibre Addition of Flax and Graphene-Based Bionanocomposites. International Journal of Chemical Engineering, 2022 (2022). https://doi.org/10.1155/2022/5086365
  61. G. Velmurugan, S.S. Kumar, J.S. Chohan, A.J.P. Kumar, T. Manikandan, D.E. Raja, K. Saranya, M. Nagaraj, P. Barmavatu, Experimental Investigations of Mechanical and Dynamic Mechanical Analysis of Bio-synthesized CuO/Ramie Fiber-Based Hybrid Biocomposite, Fibers and Polymers. (2023). https://doi.org/10.1007/s12221-023-00432-0
  62. G. Velmurugan, V. Siva Shankar, M. Nagaraj, M. Abarna, B. Rupa, S.K. Raheena, Investigate the effectiveness of aluminium trihydrate on the mechanical properties of hemp/polyester based hybrid composites. Materials Today: Proceedings, 72 (2023) 2322–2328. https://doi.org/10.1016/j.matpr.2022.09.399
  63. A. Grylewicz, T. Spychaj, M. Zdanowicz, Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Composites Part A: Applied Science and Manufacturing, 121 (2019) 517–524. https://doi.org/10.1016/j.compositesa.2019.04.001
  64. A.F. Osman, L. Siah, A.A. Alrashdi, A. Ul-Hamid, I. Ibrahim, Improving the tensile and tear properties of thermoplastic starch/dolomite biocomposite film through sonication process. Polymers, 13(2), (2021) 274. https://doi.org/10.3390/polym13020274
  65. G. Velmurugan, V. Siva Shankar, M. Kalil Rahiman, D. Elil Raja, M. Nagaraj, T.J. Nagalakshmi, Experimental Investigation of High Filler Loading of SiO2 on the Mechanical and Dynamic Mechanical Analysis of Natural PALF fibre-Based Hybrid Composite. Silicon, 15 (2023) 5587–5602. https://doi.org/10.1007/s12633-023-02464-w
  66. G. Velmurugan, V. Siva Shankar, M. Kalil Rahiman, R. Prathiba, L.R. Dhilipnithish, F.A. Khan, Effectiveness of silica addition on the mechanical properties of jute/polyester based natural composite, Materials Today: Proceedings, 72(4), (2023) 2075–2081. https://doi.org/10.1016/j.matpr.2022.08.138
  67. S. Wang, P. Zhang, Y. Li, J. Li, X. Li, J. Yang, M. Ji, F. Li, C. Zhang, Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydrate Polymers, 307, (2023) 120627. https://doi.org/10.1016/j.carbpol.2023.120627
  68. M.M. Reza, H.A. Begum, A.J. Uddin, Potentiality of sustainable corn starch-based biocomposites reinforced with cotton filter waste of spinning mill. Heliyon, 9 (2023) 27. https://dx.doi.org/10.2139/ssrn.4335483
  69. E. Pérez-Pacheco, C.R. Rios-Soberanis, J.H. Mina-Hernández, V.M. Moo‑Huchin, Use of cellulose fiber from Jipijapa (Carludovicapalmata) as fillers in corn starch-based biocomposite film. Iranian Polymer Journal, 33, (2024) 157-168. https://doi.org/10.1007/s13726-023-01244-y
  70. B. Aaliya, K.V. Sunooj, A. Vijayakumar, P. Krina, M. Navaf, P.P. Akhila, P. Raviteja, S. Mounir, M. Lackner, J. George, M.R. Nemțanu, Fabrication and characterization of talipot starch-based biocomposite film using mucilages from different plant sources: A comparative study. Food Chemistry, 438, (2023) 138011. https://doi.org/10.1016/j.foodchem.2023.138011
  71. C.M. Chan, D. Martin, E. Gauthier, P. Jensen, B. Laycock, S. Pratt, Utilisation of Paunch Waste as a Natural Fibre in Biocomposites. Polymers, 14(18) (2022) 3704. https://doi.org/10.3390/polym14183704
  72. V. Alagumalai, V. Shanmugam, N.K. Balasubramanian, Y. Krishnamoorthy, V. Ganesan, M. Försth, G. Sas, F. Berto, A. Chanda, O. Das, Impact response and damage tolerance of hybrid glass/kevlar-fibre epoxy structural composites. Polymers, 13(16), (2021) 2591. https://doi.org/10.3390/polym13162591
  73. M. Wan, S. Liu, D. Huang, Y. Qu, Y. Hu, Q. Su, W. Zheng, X. Dong, H. Zhang, Y. Wei, W. Zhou, Biocompatible heterogeneous bone incorporated with polymeric biocomposites for human bone repair by 3D printing technology. Journal of Applied Polymer Science, 138(13), (2021) 50114. https://doi.org/10.1002/app.50114
  74. A. Pudełko, P. Postawa, T. Stachowiak, K. Malińska, D. Drozdz, Waste derived biochar as an alternative filler in biocomposites - Mechanical, thermal and morphological properties of biochar added biocomposites. Journal of Cleaner Production, 278 (2021). https://doi.org/10.1016/j.jclepro.2020.123850
  75. G. Velmurugan, L. Natrayan, Experimental investigations of moisture diffusion and mechanical properties of interply rearrangement of glass/Kevlar-based hybrid composites under cryogenic environment. Journal of Materials Research and Technology, 23 (2023) 4513–4526. https://doi.org/10.1016/j.jmrt.2023.02.089
  76. T.G. Yashas Gowda, S. Ballupete Nagaraju, M. Puttegowda, A. Verma, S.M. Rangappa, & S. Siengchin, Biopolymer-Based Composites: An Eco-Friendly Alternative from Agricultural Waste Biomass. Journal of Composites Science, 7(6) (2023) 242. https://doi.org/10.3390/jcs7060242
  77. S. Agarwal, S. Singhal, C.B. Godiya, S. Kumar, Prospects and applications of starch based biopolymers. International Journal of Environmental Analytical Chemistry, 103 (2023) 6907–6926. https://doi.org/10.1080/03067319.2021.1963717
  78. S.N. Kumar, R. Jain, K. Anand, H. Ajay Kumar, Utilization of Agro Waste for the Fabrication of Bio Composites and Bio plastics—Towards a Sustainable Green Circular Economy. In: Sandhu, K., Singh, S., Prakash, C., Subburaj, K., Ramakrishna, S. (eds) Sustainability for 3D Printing. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-75235-4_7
  79. Z. Tabassum, A. Mohan, N. Mamidi, A. Khosla, A. Kumar, P.R. Solanki, T. Malik, M. Girdhar, Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnology, 17(3), (2023) 127–153. https://doi.org/10.1049/nbt2.12122
  80. K.F. Chai, W.N. Chen, Potential of food and agricultural wastes as sustainable medical materials for neural tissue engineering. Current Opinion in Biomedical Engineering, 28 (2023) 100476. https://doi.org/10.1016/j.cobme.2023.100476