Hollow microcubes with nanorods of Indium oxide (In2O3) are synthesized using hydrothermal followed by decomposition process. Synthesized materials are characterized with XRD, SEM, and FTIR spectroscopy for esteeming phase compositions and morphologies. The photocatalytic performances of two materials are evaluated by the degradation of crystal violet dye in an aqueous solution under UV light. The photocatalytic activity of prepared In(OH)3 shows ~60% degradation of crystal violet after 5 h reaction, whereas In2O3 shows ~92% degradation under same conditions.


In2O3, Crystal Violet Dye, Krikendal Effect, XRD, SEM, UV Visible, Photocatalysis,


Download data is not yet available.


  1. C. Shifu, Y. Xiaoling, Z. Huaye, L. Wei, Preparation, characterization and activity evaluation of heterostructure In2O3/In(OH)3 photocatalyst. Journal of Hazardous Materials, 180(1-3), (2010) 735-740. https://doi.org/10.1016/j.jhazmat.2010.04.108
  2. S. Tang, X. Zhang, S. Li, C. Zheng, H. Li, X. Xiao, rh-In2O3 Nanoparticles for Efficient Photocatalytic Degradation of Rifampin. ACS Omega, 8, (2023) 40099–40109. https://doi.org/10.1021/acsomega.3c02652
  3. S. Elbasuney, A.M. El Khawaga, M.A. Elsayed, A. Elsaidy, M.A. Correa Duarte, Enhanced photocatalytic and antibacterial activities of novel Ag-HA bioceramic nanocatalyst for waste-water treatment. Scientific Reports, 13, (2023) 13819. https://doi.org/10.1038/s41598-023-40970-4
  4. D.M. Tejashwini, H.V. Harini, H.P. Nagaswarupa, R. Naik, V.V. Deshmukh, N. Basavaraju, (2023), Review article An in-depth exploration of eco-friendly synthesis methods for metal oxide nanoparticles and their role in photocatalysis for industrial dye degradation. Chemical Physics Impact, 7, (2023) 100355. https://doi.org/10.1016/j.chphi.2023.100355
  5. F.T. Geldasa, M.A. Kebede, M.W. Shura, F.G. Hone, Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC Advanced, 13(27), (2023) 18404-18442. https://doi.org/10.1039/D3RA01505J
  6. A. Mancuso, N. Blangetti, O. Sacco, F.S. Freyria, B. Bonelli , S. Esposito, D. Sannino, V. Vaiano, Photocatalytic Degradation of Crystal Violet Dye under Visible Light by Fe-Doped TiO2 Prepared by Reverse-Micelle Sol–Gel Method, Nanomaterials, 13(2), (2023) 270. https://doi.org/10.3390/nano13020270
  7. S. Yan, X. Liang, S. Liu, Y. Zhang, J. Zeng, J. Bai, X. Zhu, J. Li, Synthesis of PANI@ α-Fe2O3/Al2O3 photo-Fenton composite for the enhanced efficient methylene blue removal. Journal of Sol-Gel Science and Technology, (2023) 1-13. https://doi.org/10.21203/rs.3.rs-3211246/v1
  8. S. Avivi, Y. Mastai, A. Gedanken, Sonohydrolysis of In3+ Ions: Formation of Needlelike Particles of Indium Hydroxide. Chemistry of Materials, 12(5), (2000) 1229-1233. https://doi.org/10.1021/cm9903677
  9. T. Yan, X. Wang, J. Long, P. Liu, X. Fu, G. Zhang, X. Fu, Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)3 nanocubes. Journal of Colloid Interface Science, 325(2), (2008) 425-431. https://doi.org/10.1016/j.jcis.2008.05.065
  10. Y.D. Zhang, Z. Zheng, F.L. Yang, Highly Sensitive and Selective Alcohol Sensors based on Ag-Doped In2O3 Coating. Industrial & Engineering Chemistry Research, 49(8), (2010) 3539-3543. https://doi.org/10.1021/ie100197b
  11. N. Taleban, M.R. Nilforoushan, Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Films, 518(8), (2010) 2210-2215. https://doi.org/10.1016/j.tsf.2009.07.135
  12. Y. Fang, X. Wen, S. Yang, Hollow and Tin-Filled Nanotubes of Single-Crystalline in (OH)3 Grown by a Solution–Liquid–Solid–Solid Route. Angewandte Chemie International Edition, 45(28), (2006) 4655-4658. https://doi.org/10.1002/anie.200601024
  13. J.M. Sánchez-Silva A. Aguilar-Aguilar, G.J. Labrada-Delgado, E.G. Villabona-Leal, H.J. Ojeda-Galván, J.L. Sánchez-García, H. Collins-Martínez, M.V. López-Ramón, R. Ocampo-Pérez, Hydrothermal synthesis of a photocatalyst based on Byrsonima crassifolia and TiO2 for degradation of crystal violet by UV and visible radiation. Environmental Research, 231(3), (2023) 116280. https://doi.org/10.1016/j.envres.2023.116280
  14. Z.B. Zhuang, Q. Peng, J.F. Liu, X. Wang, Y.D. Li, Indium Hydroxides, Oxyhydroxides, and Oxides Nanocrystals Series, Inorganic Chemistry, 46(13), (2007) 5179-5187. https://doi.org/10.1021/ic061999f
  15. P.S. Kohli, M. Kumar, K.K. Raina, M.L. Singla, Mechanism for the formation of low aspect ratio of La (OH) 3 nanorods in aqueous solution: thermal and frequency dependent behavior. Journal of Materials Science: Materials in Electronics, 23, (2012) 2257-2263. https://doi.org/10.1007/s10854-012-0793-7
  16. W.H. Ho, S.K. Yen, Preparation and Characterization of Indium Oxide Film by Electrochemical Deposition, Thin Solid Films, 498(1-2), (2006) 80-84. https://doi.org/10.1016/j.tsf.2005.07.072
  17. J.M. Hollas, (2004) Modern Spectroscopy. John Wiley & Sons Ltd, West Sussex, England.
  18. A.A. El Mel, R. Nakamura, C. Bittencourt, The Kirkendall Effect and Nanoscience: hollow Nanospheres and Nanotubes. Brillstein Journal of Nanotechnology, 6, (2015) 1348-1361. https://doi.org/10.3762/bjnano.6.139
  19. Y. Son, Y. Son, M. Choi, M. Ko, S. Chae, N. Park, J. Cho, Hollow Silicon Nanostructures via the Kirkendall Effect. Nano Letter, 15(10), (2015) 6914-6918. https://doi.org/10.1021/acs.nanolett.5b02842
  20. H.J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. Gösele, Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept. Nano Letter, 7(4), (2007) 993-997. https://doi.org/10.1021/nl070026p