Abstract

A revolutionary composite material, blending Glass Fiber Reinforced Polymer (GFRP) with advanced nanofillers like TiO2 and MgO, showcases remarkable versatility in various industries due to its unique properties. The process involves precise control of key factors, including fiber stacking sequence (F.S.S) and nanofiller integration (MgO and TiO2). The vacuum bagging process is employed in the production of nanocomposite laminates. Experimental studies have been conducted to assess the performance of composites with and without nanofillers, with a specific focus on crucial mechanical properties, namely ultimate tensile strength (U.T.S), flexural strength (F.S), impact strength (I.S), and hardness (H). The Taguchi L9 orthogonal array design optimizes parameters and enhances mechanical properties. Comparisons reveal significant improvements with nanofillers, including a 31.96% increase in ultimate tensile strength and a substantial 68.43% enhancement in flexural strength. ANOVA results highlight the critical impact of fiber stacking sequence on ultimate tensile strength (63.65%), flexural strength (65.70%), and impact strength (9.30%), while nanofillers play a lesser role, contributing 11.71% to ultimate tensile strength, 2.66% to flexural strength, and 3.61% to impact strength. Notably, in composite hardness, nanofillers play a more significant role, contributing 39.22%, while the influence of fiber stacking sequence is lower at 3.29%.


Downloads

Download data is not yet available.

References

  1. R. Sundarakannan, K. Balamurugan, Y. Jyothi, V. Arumugaprabu, T. Sathish, Z. Mahmoud, El S. Yousef, D. Basheer, S. Shaik, Importance of Fiber-/Nanofiller-Based Polymer Composites in Mechanical and Erosion Performance: A Review. Journal of Nanomaterials, 2023, (2023). https://doi.org/10.1155/2023/3528977
  2. G. Lawal, C. Kuforiji, S. Durowaye, K. Kassim, Study of the mechanical properties of bamboo and glass fiber reinforced hybrid polymer matrix composites. Kathmandu University Journal of Science Engineering and Technology, 17(1), (2023) 1-5.
  3. C. Rajesh Chandra, S.K. Jagadeesh, D. Aravinda, H. Jayanth, Mechanical and Three Body Abrasive Wear Behaviour of Nano-Filler Filled, Chopped Glass Fiber Filled Hybrid Composites. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 9(6), (2022) 292-299. https://doi.org/10.32628/IJSRSET229651
  4. A.A. Rajhi, Mechanical Characterization of Hybrid Nano-Filled Glass/Epoxy Composites. Polymers, 14(22), (2022) 4852. https://doi.org/10.3390/polym14224852
  5. M. Ramesh, L.N. Rajeshkumar, N. Srinivasan, D.V. Kumar, & D. Balaji, Influence of filler material on properties of fiber-reinforced polymer composites: A review. E-Polymers, 22(1), (2022) 898-916. https://doi.org/10.1515/epoly-2022-0080
  6. A. Rakhman, K. Diharjo, W.W. Raharjo, V. Suryanti, S. Kaleg, Improvement of Fire Resistance and Mechanical Properties of Glass Fiber Reinforced Plastic (GFRP) Composite Prepared from Combination of Active Nano Filler of Modified Pumice and Commercial Active Fillers. Polymers, 15(1), (2023) 51. https://doi.org/10.3390/polym15010051
  7. H.I. Elkhouly, E.M. Ali, M.N. El-Sheikh, An investigated organic and inorganic reinforcement as an effective economical filler of poly (methyl methacrylate) nanocomposites. Scientific Reports, 12, (2022) 16416. https://doi.org/10.1038/s41598-022-20393-3
  8. J. Guo, M. Cao, W. Ren, H. Wang, & Y. Yu, Mechanical, dynamic mechanical and thermal properties of TiO2 nanoparticles treatment bamboo fiber-reinforced polypropylene composites. Journal of Materials Science, 56, (2021) 12643–12659. https://doi.org/10.1007/s10853-021-06100-z
  9. R. Balasubramanya, R.R.N.S. Bhattacharya, & B.M. Madhu, Effect of Hybrid Fillers on GFRP Epoxy Composites with Water Immersion and Thermal Conditioning. Macromolecular Symposia, 398(1), (2021) 2000090. https://doi.org/10.1002/masy.202000090
  10. K. Sravanthi, V. Mahesh, B. Nageswara Rao, Influence of micro and nano carbon fillers on impact behavior of GFRP composite materials. Materials Today: Proceedings, 37(2), (2020) 1075-1078. https://doi.org/10.1016/j.matpr.2020.06.298
  11. A.A.F. Ogaili, E.S. Al-Ameen, M.S. Kadhim, & M.N. Mustafa, Evaluation of mechanical and electrical properties of GFRP composite strengthened with hybrid nanomaterial fillers. AIMS Materials Science, 7(1), (2020) 93-102. https://doi.org/10.3934/matersci.2020.1.93
  12. M.S. Alam, & M.A. Chowdhury, Characterization of epoxy composites reinforced with CaCO3-Al2O3-MgO-TiO2/CuO filler materials. Alexandria Engineering Journal, 59(6), (2020) 4121-4137. https://doi.org/10.1016/j.aej.2020.07.017
  13. R. Olayil, V. Arumugaprabu, O. Das, & W.L. Anselm, A Brief Review on Effect of Nano fillers on Performance of Composites. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1059,d (2021) 012006. https://doi.org/10.1088/1757-899X/1059/1/012006
  14. I.S. Shayea, J.R. Ugal, Influence of Some Nano-Inorganic Oxides on the Mechanical Properties of Epoxy Based Nano Composites. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 571, (2019) 012068. https://doi.org/10.1088/1757-899X/571/1/012068
  15. B. Pani, P. Chandrasekhar, S. Singh, Investigation of erosion behaviour of an iron-mud filled glass-fibre epoxy hybrid composite. Bulletin of Materials Science, 42(217), (2019). https://doi.org/10.1007/s12034-019-1894-1
  16. E. Kuram, Hybridization effect of talc/glass fiber as a filler in polycarbonate/acrylonitrile-butadiene-styrene composites. Composites Part B: Engineering, 173, (2019) 106954. https://doi.org/10.1016/j.compositesb.2019.106954
  17. K.N. Keya, N.A. Kona, & R.A. Khan, Fabrication, Mechanical Characterization and Interfacial Properties of Bamboo and E-glass Fiber Reinforced Polypropylene-based Composites. American Journal of Nanosciences, 5(4), (2019) 59-66. https://doi.org/10.11648/j.ajn.20190504.16
  18. P.H. Usha Rani, B.M. Rajaprakash, N. Mohan, & M. Akshay Prasad, Study on thermal and erosive wear behaviour of hard powders filled glass-epoxy composite. Materials Today: Proceedings, 27(3), (2020) 2011-2016. https://doi.org/10.1016/j.matpr.2019.09.049
  19. S. Jothibasu, S. Mohanamurugan, R. Vijay, D. Lenin Singaravelu, A. Vinod, & M.R. Sanjay, Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. Journal of Industrial Textiles, 49, (2020) 1036-1060. https://doi.org/10.1177/1528083718804207
  20. S. Mutalikdesai, A. Hadapad, S. Patole, & G. Hatti, Fabrication and Mechanical Characterization of Glass fibre reinforced Epoxy Hybrid Composites using Fly ash/Nano clay/Zinc oxide as filler. IOP Conference Series: Materials Science and Engineering, 376, (2018) 012061. https://doi.org/10.1088/1757-899X/376/1/012061
  21. B. Hulugappa, M.V. Achutha, B. Suresha, Effect of Fillers on Mechanical Properties and Fracture Toughness of Glass Fabric Reinforced Epoxy Composites. Journal of Minerals and Materials Characterization and Engineering, 4(1), (2016) 1-14. http://dx.doi.org/10.4236/jmmce.2016.41001
  22. S.S. Moorthy, & K. Manonmani, Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite. International Journal of Mechanical and Mechatronics Engineering, 8, (2014) 119-123. https://doi.org/10.5281/zenodo.1090713
  23. S. Kumar, S. Raju, N. Mohana, P.S. Sampath, & L.S. Jayakumari, Effects of Nanomaterials on Polymer Composites-An Expatiate View. Reviews on Advanced Materials Science, 38(1), (2014) 40-54.
  24. R.K. Nayak, A. Dash, & B.C. Ray, Effect of Epoxy Modifiers (Al2O3/SiO2/TiO2) on Mechanical Performance of epoxy/glass Fiber Hybrid Composites. Procedia Materials Science, 6, (2014) 1359–1364. https://doi.org/10.1016/j.mspro.2014.07.115
  25. G. Agarwal, A. Patnaik, & R. Sharma, Thermo-mechanical properties of silicon carbide filled chopped glass fiber reinforced epoxy composites. International Journal of Advanced Structural Engineering, 5, (2013) 21. https://doi.org/10.1186/2008-6695-5-21
  26. K. Devendra, T. Rangaswamy, Strength Characterization of E-glass Fiber Reinforced Epoxy Composites with Filler Materials. Journal of Minerals and Materials Characterization and Engineering, 1(6), (2013) 353-357. http://dx.doi.org/10.4236/jmmce.2013.16054
  27. N. Mohan, C.R. Mahesha, & B.M. Rajaprakash, Erosive Wear Behaviour of WC Filled Glass Epoxy Composites. Procedia Engineering, 68, (2013) 694–702. https://doi.org/10.1016/j.proeng.2013.12.241
  28. S. Rao, & R. Rao, Cure studies on bifunctional epoxy matrices using a domestic microwave oven. Polymer Testing, 27(5), (2008) 645–652. https://doi.org/10.1016/j.polymertesting.2008.04.005
  29. S.S. Yusuf, M.N. Islam, M.H. Ali, M.W. Akram, M.A. Siddique, Towards the optimization of process parameters for impact strength of natural fiber reinforced composites: Taguchi method, Advances in Materials Science, 20(2), (2020) 54-70. https://doi.org/10.2478/adms-2020-0010
  30. M.I. Qazi, M. Abas, R. Khan, W. Saleem, C.I. Pruncu, & M. Omair, Experimental Investigation and Multi-Response Optimization of Machinability of AA5005H34 Using Composite Desirability Coupled with PCA. Metals, 11(2), (2021) 235. https://doi.org/10.3390/met11020235
  31. P. Sivaiah, & D. Chakradhar, Modeling and optimization of sustainable manufacturing process in the machining of 17-4 PH stainless steel. Measurement, 134, (2018) 142-152. https://doi.org/10.1016/j.measurement.2018.10.067