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Abstract: In practice, the slab foundation is used widely in civil engineering. Besides the concrete material, fiber 

concrete is applied more popular in the slab foundations. Determining the ultimate load of the slab foundations is a 

complex problem due to the relation of the soil-structure interaction (SSI) problem, which depends on both the 

structures and the subsoil characteristics. ANSYS is a finite element software which is a reliable and effective 

technique to simulate the structure model. This paper aims to determine the ultimate load of the fiber-reinforced 

concrete slab on the ground subjected to the concentrated load by ANSYS software. The nonlinear material of the 

structure and the subsoil will be considered in this work. The validation test of the numerical model will be through 

the experiment data. This study has shown that the numerical model is reliable for the structure design. 
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1. Introduction 

In practice, the slab foundation is used widely in 

civil engineering. Soil-Structure Interaction (SSI) is the 

research about the interaction i) between the foundation 

and the subsoil and ii) between the structure and the 

foundation. Many scientists studied the theoretical and 

experiments on the slab interaction with the subsoil, 

including with the concrete material and fiber concrete 

applied more popular in slab foundations [1-12]. 

Numerical modeling has a significant role in 

capturing the natural behavior of the SSI. Determining 

the ultimate load of the slab on the ground is a complex 

problem due to the relation the SSI, which depend on 

both the structures and the subsoil characteristics [13, 

14]. The commercial structural software (SCIA, 

SAP2000, ETABS), which subsoil is represented by the 

simple spring model (Winkler or Pasternak), cannot 

express the actual behavior of soil [15, 16]. Meanwhile, 

the geotechnical software (MIDAS GTX NX, PLAXIS), 

which has many subsoil model options, is 

straightforward in the foundation structure model [17]. 

ANSYS software was used for modeling slabs 

on the ground with many degrees, from the simplification 

assumption to the complex model [18-20]. However, the 

ultimate load values did not mention in these papers. 

Numerical modeling by ATENA software was performed 

[21-22] based on an experimental work [12], in which the 

mechanic parameters were determined by the 

specialized laboratory test. Yet, the subsoil is assumed 

by linear elastic, which is not actual behavior. 

This paper aims to determine the ultimate load 

of the fiber-reinforced concrete slab on the ground 

subjected to the concentrated load by ANSYS software. 

The nonlinear material of the structure and the subsoil 

are considered in this work. The validation test of the 

numerical model will be through the experiment data and 

numerical method performed by [12, 22]. 

 

2. Specification of Analyzed Structures 

Three fiber reinforced-concrete square slabs 

with a side length, 2 m, and a thickness of 0.15 m, 

executed for SSI experimental in, were chosen to 

perform the numerical model by ANSYS 2020R1 

software [12]. The concentrated force was applied to the 

slabs through the square plate with a side length, 0.4 m 

and a thickness of 0.03 m. 

Table 1 summarizes the fiber concrete 

mechanic properties of three slabs. The steel 

reinforcement 8, with the strength characteristics shown 

in Table 2, was distributed with the distance a = 0.1 m in 

each direction. The concrete cover of the bar was set to 

30 mm. The subsoil under the slab foundations, qualified 

as sandy clay CS, is a depth of ten meters [17]. The 

strength characteristics of the subsoil are shown in Table 

3.  
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Table 1. Mechanic properties of fiber concrete 

Slab 

 

Fiber 

[kg/m3] 

Compressive strength (cylinder) Tensile strength 

Mean compressive 

strength [MPa] 

Standard 

deviation [MPa] 

Mean tensile 

strength [MPa] 

Standard 

deviation [MPa] 

G02 25 29.28 0.846 2.96 0.223 

G03 50 25.27 2.012 3.12 0.21 

G04 75 24.90 1.007 3.17 0.593 

 

Table 2. Strength characteristics of reinforcement 

Modulus of 

elasticity [MPa] 

Poisson’s 

coefficient 

Yield strength 

[MPa] 

Tensile strength 

[MPa] 
lim k 

20 x 104 0.2 550 577.5 0.025 1.05 

 

Table 3. Strength characteristics of the subsoil 

Unit weight 

[kN/m3] 

Modulus of 

deformability 

[MPa] 

Poisson’s 

coefficient 

Cohension 

[kPa] 

Friction angle 

[degreee] 

Dilatancy angle 

[degreee] 

19 12.5 0.35 9 19.3 0 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The typical inspection slab [12] 

The ultimate load of three slabs, G02, G03, G04, 

performed by the experimental, was 542 kN, 640 kN, 752 

kN, respectively. Figure. 1 shows the typical inspection 

slab. One can find the details of the experiment in [12]. 

 

3. Analysis model by ANSYS 2020 R1 

software 

The analyzed structures were modeled by 

ANSYS software, in which many structural analysis 

elements are available. The SOLID65 element, derived 

from the work of William, was used to model the 

validation slabs [23]. Nine parameters are required for 

the SOLID65 element. The purpose of this study is to 

determine the ultimate load; therefore, the values of 

constant 1, 2, 4 corresponding 0.3, 1, -1, respectively, 

are set up [24]. The parameter uniaxial tensile cracking 

stress (3) is defined by Table 1. Other variables (6-9) are 

assigned zero values. 

The main difference between concrete and fiber 

concrete in compression is the descending or softening 

of the stress-strain curve [25]. This paper focuses on the 

ultimate load; therefore, the stress-strain of plain 

concrete can apply to the fiber concrete. The following 

equations suggested by MacGregor et al [24, 26]. were 

used to define the compressive uniaxial stress-strain 

curve of the fiber concrete. 

𝑓 =
𝐸𝑐𝜀

1+(
𝜀

𝜀0
)
2,    (1)
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𝜀0 = 2
𝑓𝑐
′

𝐸𝑐
,    (2) 

𝐸𝑐 =
𝑓

𝜀
,     (3) 

in which f is the stress of the fiber concrete 

corresponding to the strain value, 𝜀 

f’c is the compressive strength of the fiber 

concrete 

Ec is the elasticity modulus defined by EC2 [27] 

𝐸𝑐 = 22 (
𝑓𝑐𝑚

10
)
0.3

,    (4) 

where fcm is the mean of the compressive 

strength of the specimens. Figure. 2 depicts the 

compressive uniaxial stress-strain curve of the fiber 

concrete material of the slab G02. 

The LINK8 element was used to model the 

reinforcement in the tested slabs. The bond between the 

concrete and steel was supposed to be perfect. The 

bilinear stress-strain with hardening for the steel derived 

from EC2 standards was selected for the material model 

of the reinforcement bars [27]. The SOLID186 element 

was chosen to model the subsoil and load plate. Linear 

stress-strain of steel is assigned for load plate. 

From a geological view, the subsoil is not 

complicated. Therefore Drucker-Prager model, which is 

the adjustment of Von Mises model comprising the 

impact of hydrostatic pressure on yielding, is chosen to 

capture the actual behavior of the subsoil [28]. The 

subsoil is modeled by inhomogeneous, divided into five 

layers with a thickness of 400 mm space [18, 29-31]. The 

three dimensions of the subsoil model are 6000 x 6000 

x 2000 mm. The boundary condition selected in this 

paper is fixed all surfaces except the layer contact with 

the slab [22]. The modulus of deformability, E, and 

Poisson’s coefficient, 𝜇, changed with the depth is 

shown in Table 4, which is calculated by the formulas in 

[32]. 

𝐸(𝑧) = 𝐸𝑑𝑒𝑓(1 +𝑚1𝑧),   (5) 

𝜇(𝑧) = 𝜇(1 +𝑚2𝑧),   (6) 

in which m1 = 0.5065, m2 = 0.0123 

z is the depth of the soil (m). 

For the comparison, the modulus of 

deformability of the soil is selected with three variants, 

E_top, E_mid, E_bot, which are denoted for the three 

positions, top, middle, and bottom layer of the solid soil 

element, respectively. The element CONTA174 with 

TARGE170 is used to model the interaction between the 

foundation and subsoil. The friction between the 

foundation and subsoil is neglected. The non-linear 

analysis was performed by an incremental load process 

applying the Newton–Raphson method. The tolerance 

error is assigned with the value, 5%.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The stress-strain of the fiber concrete of the slab G02 

 

Table 4. The modulus of deformability and Poisson’s coefficient of the subsoil layers 

The depth of the 

subsoil [m] 

The modulus of deformability of 

the subsoil layers E [MPa] 

Poisson’s 

coefficient  

0 12.5 0.350 

0.2 13.8 0.351 

0.4 15.0 0.352 

0.6 16.3 0.353 

0.8 17.6 0.353 

1 18.8 0.354 

1.2 20.1 0.355 

1.4 21.4 0.356 

1.6 22.6 0.357 

1.8 23.9 0.358 

2.0 25.2 0.359 
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Figure 3. 3D numerical model by ANSYS 2020 R1 of the analyzed structures 

 

 

 

 

 

 

 

 

 

Figure 4. Vertical displacement of the slab G02 corresponding with E_top at the load P = 536.8 kN 

 

 

 

 

 

 

 

 

 

 

Figure 5. The principal tensile stress of the concrete of the slab G02 corresponding with E_top at P = 536.8 kN 

Figure. 3 shows the model of the slab foundation 

and the inhomogeneous subsoil performed in ANSYS 

2020 R1. 

 

4. Result discussions 

In this section, the results obtained by ANSYS 

simulation are presented and compared with the results 

of i) the experiment, ii) numerical model by ATENA 

software performed by with three variants modulus of 

deformability subsoil, E = 12.5, 22.5, and 32.5 MPa 

[12,22]. 

Figure. 4 shows the 3D deformation of the slab 

G02 corresponding with E_top at the load P = 536.8 kN. 

The deformation mode is uniform with the experimental, 

where the corners of the slab are moved to the ground 

[12, 17]. Figure. 5 and Figure. 6 depict the principal 

tensile stress of the concrete and the tensile stress of the 

reinforcement of the slab G02 corresponding with E_top 

at the load P = 536.8 kN, respectively. It can be seen 
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from Figure. 5 and Figure. 6 that the tensile stress of the 

concrete passed over the stress limit, and the tensile 

stress of the reinforcement reached the yield strength. 

Figure. 7 and Figure. 8 show the deformation of 

the subsoil and the slab at the section plane through the 

center of slab G02, respectively. The deviation of 

settlement at the center of the slab and the subsoil is 

4.99%. 

Figure. 9, Figure. 10, and Figure. 11 show the 

deflection of the slab G02, G03, G04, respectively, under 

ultimate load at the section plane through the sensors (4 

to 8) performed by experimental [12] and ANSYS-E_top. 

From Figure. 9 to Figure. 10, it can be seen that the 

numerical model can estimate the maximum deflection 

accurately; the deflection curve of the slab foundation 

derived from the numerical model is more outstretched 

than the actual deflection. 

In Table 5, the ultimate load of the ANSYS with 

three variants is presented and compared by the 

deviation with the experimental data of three slabs [12]. 

Figure. 12 and Figure. 13 show the load-displacement 

diagram of slab G02, G03 respectively. The comparison 

results were performed between i) ANSYS simulation, ii) 

experiment data, and iii) ATENA software [12, 22]. It can 

be observed that the ultimate load of the ANSYS (E_top) 

is close to the experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The tensile stress of the reinforcement of the slab G02 corresponding with E_top at P = 536.8 kN 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The deformation of the subsoil at the section plane through the slab center of slab G02 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The deformation of the slab at the section plane through the slab center of slab G02 
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Figure 9. The deflection of the slab G02 at the section plane through the sensors (4 to 8) derived from 

experimental and ANSYS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The deflection of the slab G03 at the section plane through the sensors (4 to 8) derived from 

experimental and ANSYS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. The deflection of the slab G04 at the section plane through the sensors (4 to 8) derived from 

experimental and ANSYS 
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Table 5. Comparison the ultimate load between the methods 

Slabs Experimental 

[kN] 

 

E_top E_mid E_bot 

P [kN] Deviation 

% 

P [kN] Deviation 

% 

P [kN] Deviation 

% 

G02 542 536.8 0.96 586.11 8.14 615.5 13.56 

G03 640 630.41 1.49 671.03 4.85 708.7 10.73 

G04 752 686.83 8.67 725.3 3.55 762.6 1.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The load-displacement of slab G02 derived from the methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The load-displacement of slab G03 derived from the methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. The load-displacement of slab G04 derived from the methods 
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In Figure. 14, the load-displacement diagram of 

slab G04 is depicted for i) ANSYS simulation, ii) 

experiment data, and iii) ATENA software [12, 22]. It can 

be seen that the ultimate load of the ANSYS (E_bot) is 

close to the experimental data. From Figure. 12 to 

Figure. 14, one can see that the increase of the modulus 

of deformability values leads to a rise to the ultimate load 

in ANSYS simulation. It is worthy to note that the ultimate 

loads of slab fiber concrete obtained by [22] tend to be 

higher than those of the experimental [12]. 

 

5. Conclusion 

In this work, the ultimate load of the fiber-

reinforced concrete slab on the ground subjected to the 

concentrated load was performed and compared with 

the experiment data and ATENA software. Some 

conclusions can be withdrawn: 

1. The modulus of the deformability significantly 

influences the load capacity of the slab 

foundation. 

2. ANSYS simulation can express the subsoil model, 

for example, Drucker-Prager, which cannot 

perform in ATENA software. 

3. The stress-strain of the plain concrete can be 

applied to the fiber concrete to predict the slab 

foundation's ultimate load. 

4. It can be seen from Figure. 12 to Figure. 14 that 

the ultimate loads of fiber-reinforced concrete slab 

obtained by ATENA software tend to be higher 

than those of the experimental. It can lead to 

unsafety in design. 

5. The deviation of ANSYS simulation (E_top) and 

the experimental ranges (0.96-8.67%). The 

ultimate loads of fiber-reinforced concrete slabs 

obtained by the numerical model in this study 

underestimate the experimental results 

acceptance range. 

6. The numerical method can estimate the maximum 

deflection of the slab accurately; the deflection 

curve of the slab foundation derived from the 

numerical method is more outstretched than the 

actual deflection. 
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