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Abstract: This paper proposes one of the optimization methods based on atmospheric motion. It is a global 

optimization nature-inspired method such as Wind Driven Optimization (WDO) approach to solve the Optimal Power 

Flow (OPF) and Emission Index (EI) in electric power systems. Our main aim is to minimize an objective function 

necessary for a best balance between the energy production and its consumption, which is presented as a nonlinear 

function, taking into account of the equality and inequality constraints. The WDO approach is nature-inspired, 

population based iterative heuristic optimization algorithm for multi-dimensional and multi-modal problems. WDO 

method have been examined and tested on the standard IEEE 30-bus system and IEEE 57-bus system with different 

objectives that reflect total active power generation cost, the active power losses and the emission index. The results 

of used method have been compared and validated with known references published recently. The results are 

promising and show the effectiveness and robustness of proposed approach. 
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Nomenclature 

Symbols Definition 

ak ,bk , ck Cost coefficients w/o valve-point. 

dk, ek Cost coefficients w/ valve-point. 

kkkkk  ,,,,  Emission coefficients 

f(x, u) Objective function. 

f1 Cost function w/o valve-point. 

f2 Cost function with valve-point 

f3 
Power losses function. 

f4 
Emission index function 

f5 
Cost and active loss function 

f6 
Cost and emission function 

f7 
Cost, power loss and emission  

g (x, u) Inequality constraints. 

h (x, u) Equality constraints. 

nb Total number of buses. 

nbr Total number of branches. 

ng Total number of generators. 

nL Total number of branches. 

nT Total number of transformers 

nCom Total number of compensators 

T Tap settings transformers. 

u Control variables vector  

x Stat variables vector  

1. Introduction 

Electric power systems engineering has the 

longest history of development compared to the various 

fields of engineering. In electrical supply systems, there 

are a wide range of problems involved in system 

optimization [1]. Among these problems, power system 

scheduling is one of the most important in system 

operation, control, and management. 

Electric power plants that operate on Esoteric-

fuel are among the most prominent sources of air 

pollution and contribute to causing great harm to the 

environment due to the burning of raw fuels such as coal, 

gas, and oil [2]. The burning of coal contributes a large 

proportion of polluting gases to the Earth's atmosphere, 

as it produces large amounts of Carbon oxides CO2, and 

some toxic and dangerous gases such as emissions of 

Sulfur oxides SOx, and Nitrogen oxides, NOx. The 

quantity and nature of the pollutant depends on the type 

and quality of the used fuel [2, 3].  

After implementation of the 1990 amendment to 

the United States Clean Air Act and increasing public 

awareness of environmental protection and public 

utilities, electricity production companies were obligated 

to adapt their designs and making strategy to reduced 

pollution rate and emissions of electric power plants [3, 

4]. 
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The emission index, or environmental index, is 

considered an important indicator from a conservation 

point of view [4]. Several strategies have been proposed 

and discussed to reduce atmospheric emissions.  

The OPF problem has a long history of 

development of more than 58 years [1]. Since the OPF 

problem was first discussed by Carpenter in 1962, then 

formulated by Dommel and Tinney in 1968 [5]. 

The main purpose of solving the OPF problem 

is to calculate the optimal operating condition of the 

power system and corresponding settings for the 

economic operation of the control variables, by 

optimizing a specific objective taking into account 

economic and security constraints, such as equality and 

inequality constraints [1, 6, 7]. 

Over the past few years, many methods have 

been used to solve the OPF and EI problems like; 

Quadratic programming method (QP) [8], Newton and 

Qassi-Newton methods [9-11], Linear and non-linear 

programming methods, and nonlinear internal point 

methods (IPM) [12-16]. 

In the last two decades, and in order to solve the 

OPF and EI problems, several methods of optimization 

are formulated such as Artificial bee colony (ABC) and 

Incremental artificial bee colony [17-25], Bacterial 

foraging algorithms (BFA) and hybrid fuzzy based 

Bacterial foraging algorithm [26-27], Artificial neutral 

networks (ANN) [29, 30], Harmony search (HS) [31, 32], 

Cuckoo search algorithm (CSA) [33], Evolution 

programming (EP) [34, 35], Differential evaluation (DE) 

[36-39],  Modified differential evaluation (MDE) [40-44], 

Tabu search  (TS) [45-47], Simulated annealing  (SA) [48-

49], Gravitational search algorithms (GSA) [50-52], 

Evolutionary algorithm [53-55], Genetic algorithms (GA) 

[56-60], Particle swarm optimization (PSO) [61-69], 

Modified Particle swarm optimization (MPSO) [70-72], 

Distributed Sobol Particle swarm optimization (DSPSO) 

[73], Ant colony optimization (ACO) [74-79], Firefly 

Algorithm (FFA) [80-82], Tree-seed algorithm (TSA) [83], 

Sine-cosine algorithm (SCA) [84], Crow search 

algorithm (CSA) [85], Hybrid particle swarm 

optimization-differential evolution (FAHSPSO) [86], 

Modified imperialist competitive algorithm (MICA) [87], 

Grey wolf optimizer (GWO) [3, 38, 88-96], Shuffled frog 

leaping algorithm (SFLA) and Modified SFLA [48, 97]-

[98], Electromagnetism-like mechanism method (ELM) 

[99], Ant-lion optimizer [100], Interior search algorithm 

[101], and more recently the Wind driven optimization 

(WDO) method [102-112] were successfully utilized 

since their introduction to the literature as single 

objective optimization algorithm, Machine Learning and 

Modified grasshopper optimization Algorithms 

[113,114], Rao Algorithm [115], Hamiltonian Technique 

[116], Artificial Eco System optimization [117-118], 

Teaching-Learning-Studying-Based Optimization [119] 

and Combining Deep Learning [120], Artificial Fish 

Swarm Algorithm [121]. Variants of these algorithms 

were proposed to handle multi-objective functions in 

electric power systems.  

The WDO is a natural-inspired algorithm based 

on heuristics techniques [105]. This promising algorithm 

is implemented firstly to solve the electromagnetic 

problems in communication engineering studies [106]. 

 

2. Problem Formulation 

 The OPF and EI are nonlinear optimization 

problems, represented by a predefined objective 

function f, subject to a set of equality and inequality 

constraints [18, 64]. Generally, these problems can be 

expressed as follows. 

),( uxfMin     (1) 

Subject to 

0),( =uxh
                              (2) 

                   0),( uxg                                     (3) 

maxmin xxx 
 & maxmin uuu                           (4) 

 Where ),( uxf  is a scalar objective function to be 

optimised, ),( uxh  and ),( uxg are, respectively, the set of 

nonlinear equality constraints represented by the load 

flow equations and inequality constraints consists of 

state variable limits and functional operating constraints. 
x  and u  are the state and control variables vectors 

respectively.
,minx maxx

, minu
and maxu

are the 

acceptable limits of variables. Hence, state variables 

vectors x   can be expressed as given 

 
brngnL nGGLLG

t SSQQVVPx ,...,,,...,,..., 1111
=

               (5) 

Where, GP
, GQ , LV  and Sk are the generating 

active power at slack bus, reactive power generated by 

all generators, magnitude voltage of all load buses and 

apparent power flow in all branches, respectively. gn
, Ln

and brn
 are, respectively, the total number of 

generators, the total number of load buses and the total 

number of branches. 

The set control parameters are represented in 

terms of the decision vector u as follows: 

 
Tcomcomngng nnGGGG

t TTQQVVPPu ,...,,,...,,...,,..., 1112
=              (6) 

Where, GP
 are the active power generation 

excluding the slack generator, GV  are the generators 

magnitude voltage, T is tap settings transformers, and 

com
Q

 are the reactive power compensation by shunt 

compensator, Tn  and com
n

 are the total number of 

transformers and the total number of compensators 

units, respectively. 
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2.1. Single-Objective Function 

 In general, the single-objective function is a 

nonlinear programming problem. In this paper, four 

single objectives commonly found in OPF and EI have 

been considered who are the generation cost without 

and with valve-point effect, 1f and 2f , respectively, the 

active power losses 3f , and the emission index 

optimization 4f . 

 

2.1.1. Cost Without Valve-Point Optimization 

The objective function of cost optimization 1f of 

quadratic cost equation for all generators as given below 

2

11

1 min)(min gkk

n

k

gkkk

n

k

gk PcPbaPCf
gg


==

++==

      (7) 

Where 1f is the total generation cost in ($/h)? 

gkP
 and gn

 are the active power output generated by the 

ith generator and the total number of generators. kk ba ,

and kc
are the cost coefficients of the generator k. 

 

2.1.2. Cost with valve-point optimization 

 Generally, when every steam valves begins to 

open, the valve-point shows rippling. However, the 

characteristics of input-output of generation units make 

nonlinear and non-smooth of the fuel costs function. To 

consider the valve-point effect, the sinusoidal function is 

incorporated into the quadratic function [18, 19]. 

Typically, this function is represented as follows 

  ( )( )gkgkkk

n

k

gkkgkkk PPedPcPbaf
g

−+++= 
=

min

1

2

2 sinmin

      (8) 

Where kd and ke are the cost coefficients of unit 

with valve-point effect. 

 

2.1.3. Active Power Loss Optimization 

 The active power loss function 3f in (MW) to be 

minimized can be expressed as follows 

 
 

=

−+=
bn

k

kjjkjkkj VVVVGf
1

22

3 cos2 
              (9) 

Where, Vk and Vj are the voltage magnitude at 

buses k and j, respectively, Gkj is the conductance of line 

kj, kj
is the voltage angle between buses k and j and bn

 

is total number of buses. 

 

2.1.4. Emission optimization 

 The emission function is the sum of exponential 

and quadratic functions of real power generating. Using 

a quadratic equation, emission of harmful gases is 

calculated in (ton/h) as given below 

( ) ( )gkkk

n

k

gkkgkkk PPPf
g

 exp10min
1

22

4 +++= 
=

−

   (10) 

Where, 4f is the emission function in (ton/h), 

kkkk  ,,, and k are the emission coefficients of the 

generator k. 

 

2.2. Bi-objective Function 

2.2.1. Cost and active power loss optimization 

When the optimization is the cost and the active 

power losses together, the bi-objective function as given 

below 

322132115 fforffff objectiveBi  ++== −
     (11) 

Where 1 and 2 are the weighting factors.  

 
2.2.2. Cost and Emission Optimization 

 Emission is needs to minimize the generation 

cost and emission. The objective function is  

       
( ) ( )42416 minmin DffDfff +=+=

          (12) 

6f is the total cost-emission in ($/h), and D is the price 

penalty factor in ($/ton). 

 

2.2. Multi-Objective Optimization 

 All objective functions discussed before are 

used to solve the multi-objective OPF and EI problems. 

Therefore, the multi-objective problems can be stated as 

follows 

4332214332117 ffforffff  ++++=
    (13) 

The function used in the case of weighted 

aggregation is given by equation (12). 

          

==

==
ff n

i

ii

n

i

ii andwithfMinF
11

10 
               (14) 

Where, 
f

n

i

i ni
f

:1&1
1

==
=


, i  is the weighting 

factor and fn
is the number of objective function. 

 

2.3. Equality Constraints 

 These equality constraints are the sets of 

nonlinear load flow equations that govern the power 

system, i.e.: 
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+=−

+=

Lkkcomkgk

Lkkgk

QQQQ

PPP

                  (15) 

Where gkP
 and gkQ

are, respectively, the 

scheduled active and reactive power generations at bus 

k. kP
, kQ

 are the active and reactive power injections at 

bus k. LkP
, LkQ

  and comkQ
are the active and reactive 

power loads at bus k and the reactive power 

compensation at bus k.  

 

2.4 Inequality Constraints 

The inequality constraints ),( uxg  are 

represented by the system operational and security 

limits, listed below 

✓ Active and reactive power generations limits:  

maxmin

gkgkgk PPP 
  where  gnk ,.....,1=

            (16) 

maxmin

gkgkgk QQQ 
  where  gnk ,.....,1=

           (17) 

✓ Voltage magnitudes and angles limits: 

maxmin

kkk VVV 
   where  bnk ,.....,1=

           (18) 

maxmin

kkk  
 where  bnk ,.....,1=

             (19) 

✓ Tap settings transformers limits: 

maxmin

kkk TTT 
    where   Tnk ,.....,1=           (20) 

✓ Reactive power compensation limits: 

maxmin

comkcomkcomk QQQ 
  where  comnk ,.....,1=

       (21) 

Where, bn
, Tn , comn

,T  and comQ  are total number 

of  buses, the total number of  transformers, the total 

number of compensators, the transformers tap settings 

and the reactive power compensation, respectively. 

✓ Security constraint limits: 

max

kjkj SS 
    where     brnjk ,.....,1==

             (22) 

max

kjS
 is the maximum apparent power flow.  

 

2. Wind Driven Optimization Technique 

The WDO algorithm was first introduced in 2010 

[108]. The WDO is one of the optimization methods 

based on atmospheric motion, and it is global 

optimization nature-inspired method. This technique 

works on population based global heuristic algorithms 

for multi-dimensional and multi-dimensional models in 

the research field to apply constraints [104, 107]. 

 

 

3.1. Context Theory and Destination Of WDO 

In the atmosphere, wind blows in an effort to 

make equal air pressure [106]. More exclusively, the air 

is used to move from high pressure to low pressure at a 

velocity, which is proportional to the pressure gradient 

[104]. Furthermore, some assumptions and 

simplifications are formulated in derivation of the WDO 

algorithm. The starting point in the development of WDO 

is with Newton’s second law of motion, which is known 

to provide very accurate results when applied to the 

analysis of atmospheric motion [106]. 


→→

= iF
                                            (23) 

Where, 
→

 is the acceleration vector, ρ is the air 

density for an infinitesimal air parcel, and iF
→

are the all 

forces acting on the air parcel [108]. The equation that 

relates air pressure to its density and temperature is 

given by the ideal gas law, formulated as follows 

        
RTP =

                                        (24) 

In Eq. (24), P, R and T are, respectively, the 

pressure, the universal gas constant, and the 

temperature. In Eq. (23), there are four main forces that 

either cause the wind to move in a specific direction or 

deflect it from its path [102]. The most observable force 

causing the air to move is the pressure gradient force 

PGF
→

, although the friction force FF
→

, the gravitational 

force GF
→

 and the Coriolis force CF
→

[104, 108]. Knowing 

that the force of the degree of pressure acting a very 

important role in air movement.  

By assuming air has a finite volume (δV), the 

physical force equation because of pressure gradient 

can be expressed as [102]. 

              VPF PG 
→→

−=                     (25) 

The frictional force oppose the air parcel motion started 

by FPG, and can be expressed as 

→→

−= vF F 
                         (26) 

The gravitational force pull the air parcel to the center of 

the earth expressed as 

→→

= gVFG 
           (27)  

The Coriolis is caused by the rotation of earth, and 

deflects the path of wind from one dimension to another. 

This force will work in such a way that velocity in one 

direction is influenced by velocity of another direction 

[108]. It can be expressed as 

   

→→

−= vFC 2                                 (28) 
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Where, 
→

P is the pressure gradient, V

represents an infinitesimal air volume, α is the frictional 

coefficient, 
→

v is the wind velocity vector, 

→

g is the 

gravitational acceleration, and Ω represent the rotation 

of earth.  

Taking for simplicity, the acceleration equal to 

(Δu/Δt), the time step Δt =1 and δV = 1. Therefore, the 

summation of including PGF
→

, FF
→

, GF
→

, and CF
→

 in the 

total force described in Eq. (25) can be rewritten as 

)2()()(

t CGF

→→→→

→→→→→→

−+−+−+=

+++==

vvPg

FFFFvv PG





            

  (29) 

The change in velocity in Eq. (29) can be 

extracted from modifying the Eq. (30) based on Eq. (24) 

and division by
( ))(kPRT

 [109]. 

)
2

()(
)(

)(
)(

)(

)()1(

k

k
k

k

kk

P

RTv
v

P

RT
Pg

vvv

→
→→→

→

+

→→


−+−−+=

−=



 
                  (30) 

The vector g can be written as g = |g|(0 – x(k)) 

[103, 109]. The pressure gradient is the force that 

attempts to move an air parcel from its current position 

into optimal pressure. It can be expressed as 

)( )()()()( koptkopt xxPPP −−=−
. All coefficients in the last 

term of Eq. (30) are collected to be a single term as c = 

−2|Ω|RT [111]. Eq. (30) can be modified as in Eq. (31).  

( ) ( )

( )
)(

dim

)(

)()(()(

)(

)()()1(

)

1

k

other

k

koptkopt

k

kkk

P

vc
xxPP

P

RT

xgvv

−→

→→

+

→

+−−

+





−+





−= 

      (31) 

On the basis of ideal gas law equation from Eq. (24), and 

for simplicity, assuming that a single time step (Δt=1), 

the air density, ρ can be written as the pressure [104]. 

Based on Newton’s second law of motion, the velocity 

vector, v is  

( ) ( )

( )
)(

dim

)(

)()(

)(

)(

)()()1(

1

1

k

ensionother

k

kopt

k

opt

kkk

P

vc
xxRT

P

P

xgvv

−→

→→

+

→

−













−−

+−−= 

                  (32) 

The updated velocity of the next iteration v(k+1) 

shown in Eq. (32) depends on the velocity of current 

iteration (v(k)), the air parcel of current position in search 

space (x(k)), the distance from the highest pressure point 

that has been found (x(opt)), the maximum pressure 

(P(opt)), the pressure at the current location (P(k)), the 

temperature (T), the gravitational acceleration (g), the 

universal gas constant R, the frictional coefficient α, and 

the Coriolis constant, c [102-107]. Air parcel position is 

updated, after the velocity of parcel given by Eq. (32) is 

updated. This can be expressed as  

         
tvxx kkk += +

→→

+

→

)1()()1(
             (33) 

In Eq. (33), )(kx
→

represent that the air parcel 

vector would continue to move in its previous path with 

some opposition that is created due to friction. )1( +

→

kv  is 

an attractive force that pulls against the center of 

coordinate system. The time step Δt supposing that is 

the global best position. )1( +kx
is a vector represent the 

deflecting force [107 - 109]. The WDO permits the air 

parcels to move only in the interval [-1, 1] for each 

dimension [110].  To check that the velocity amplitude is 

within the maximum and minimum limits in any 

dimension, the following equation is used [108].  







−−


=

+

+

maxmax

max)1(max

)1(
vvifv

vvifv
v

k

k

               (34) 

 

3.2. Implementation of WDO In OPF Problem 

In order to implement the WDO method to solve 

the OPF and EI problems, the decision variables must 

be specified. The first step to execute the WDO method 

is the initialization, i.e. (the algorithm starts by randomly 

initializing the position and the velocity vectors). In the 

second step, after the execution of the optimization 

practice based on the WDO algorithm, the populations 

of air parcels are distributed randomly over the search 

space and at random velocities. In the third step, the 

values of the position and the velocity of each air parcel 

chosen in the previous step must be evaluated (objective 

function). The velocity would be updated and check the 

limits using Eq’s. (32) and (34), respectively. In the fifth 

step, the position of each air parcel must be updated and 

outgoing air parcels are verified to avoid violating limits. 

The updating iterations are tested according Eq. (33). 

Then, the above procedure would be repeated until 

reaching the maximum iterations.  

 

4. Simulation & Results 

The proposed WDO-based algorithm for solving 

OPF and EI problems has been applied to the IEEE 30-

bus and IEEE 57-bus test systems. The numerical and 

graphical results are represented in these sections. 

 

4.1. IEEE 30-bus test system 

        The five generators system, IEEE 30-bus system is 

used throughout this work to test the proposed 
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algorithm. This system consists, 30 buses, 6 generators 

units and 41 branches, 37 of them are the transmissions 

lines and 4 are the tap changing transformers. One of 

these buses is chosen like as a reference bus (slack 

bus), the buses containing generators are taken the PV 

buses, the remaining buses are the PQ buses or loads 

buses. It is assumed that 9 capacitors compensation is 

available at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29. 

The network data, the cost and emission coefficients of 

the five generators are referred in [122]. The one-line 

diagram of IEEE 30-bus system is shown in Figure 1. 

The total loads of active and reactive powers are 

283.4 (MW) and 126.2 (MVAr), respectively, with 24 

control variables. The basis apparent power used in this 

paper is 100 (MVA).  The simulation results of load flow 

problem of test system are summarized in Table 1.  

 

4.1.1. Case 1: Cost optimization  

The objective functions of cost 1f   given in Eq.  

(7) is optimized. Therefore, in this case, the cost has 

resulted in 801.1347 ($/h), which is considered 8.3608 

% lower than the initial case (load flow). Figure 2 shows 

the convergence characteristic of cost using WDO 

algorithm. Table 1 summarizes the optimal control 

variables of this case. 

 

4.1.2. Case 2: Cost with valve-point effect 

optimization  

The cost function 2f  given in Eq.  (8) is 

optimized. Therefore, in this case, the cost has resulted 

in 826.37 ($/h), which is considered 5.4742 % lower than 

the initial case. The convergence characteristic of cost 

optimization for this case is introduced in Figure 2. Table 

1 summarizes the optimal control variables of this case. 

 

4.1.3. Case 3: Active Power Loss Optimization 

The optimal control variables of this case are 

introduced in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. One-line diagram of IEEE 30-bus system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Convergence of algorithm for cases 1 and 2. 

 

0 50 100 150 200 250
800

900

1000

1100

1200

1300

1400

1500

 Iterations

 O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 

 

Cost w/o valve-point effect

Cost with valve-point effect



Vol 4 Iss 2 Year 2022      Nabil Mezhoud et.al., /2022 

 Int. Res. J. Multidiscip. Technovation, 4(2) (2022) 21-41| 27 

 

Table 1. Single objective results of IEEE 30-bus system. 

 Optimal values 

Control variables 
Basic Load 

flow 

After optimization 

Cost w/o 

valve  

Cost w/ 

valve  

Loss w/ 

valve 

Loss w/o 

valve 
Emission 

Case 1 Case 2 Case 3 Case 4 

PG2 (MW) 40.0000 48.2030 29.4689 79.5519 79.6882 77.5750 

PG5 (MW) 0.0000 21.8059 16.0676 49.7269 49.7604 50.0000 

PG8 (MW) 0.0000 19.3977 10.0938 34.8591 35.0000 27.3119 

PG11 (MW) 0.0000 13.4665 10.1456 29.7040 29.6496 30.0000 

PG13 (MW) 0.0000 12.0000 12.0379 39.6966 40.0000 40.0000 

V1 (pu) 1.0600 1.0893 1.0671 1.0612 1.0565 1.0272 

V2 (pu) 1.0450 1.0672 1.0472 1.0546 1.0549 1.0289 

V5 (pu) 1.0500 1.0295 1.0006 1.0331 1.0392 0.9584 

V8 (pu) 1.0700 1.0359 1.0180 1.0426 1.0407 0.9567 

V11 (pu) 1.0900 1.0568 1.1000 1.0509 1.0940 1.0239 

V13 (pu) 1.0900 1.0333 1.0707 1.0501 1.0334 1.0671 

Qcom10 (MVAr) 0.0000 4.0308 3.3442 4.3007 0.1324 1.4882 

Qcom12 (MVAr) 0.0000 2.4727 4.2582 3.5066 2.5973 1.3674 

Qcom15 (MVAr) 0.0000 2.8602 4.1133 3.1962 2.1219 5.0000 

Qcom17 (MVAr) 0.0000 2.5035 4.4476 2.3281 0.3839 0.0559 

Qcom20 (MVAr) 0.0000 3.4482 0.0652 4.6020 1.4640 1.8672 

Qcom21 (MVAr) 0.0000 0.8353 2.0983 3.5938 2.7041 1.3149 

Qcom23 (MVAr) 0.0000 3.1147 3.7974 4.9475 1.0174 0.0000 

Qcom24 (MVAr) 0.0000 1.3913 3.3311 2.2424 3.5296 4.7243 

Qcom29 (MVAr) 0.0000 2.2401 3.9877 4.3683 3.1557 3.4815 

T6-9 0.9780 1.0019 1.0081 1.0061 1.0370 0.9018 

T6-10 0.9690 1.0208 0.9984 1.0156 0.9963 1.0979 

T4-12 0.9666 0.9800 0.9919 1.0125 1.0084 1.0039 

T28-27 0.9320 0.9840 0.9597 1.0044 0.9817 0.9137 

Cost in ($/h) 874.2272 801.1347 826.3700 964.0800 1025.9600 954.3807 

Active power loss in 

(MW) 
17.5600 9.1924 12.1410 3.2327 3.2771 5.1640 

Emission (ton/h) 4.1000 0.3117 0.3211 0.2161 0.2162 0.2150 

Slack generator in 

(MW) 
260.9600 177.7193 217.7273 53.0943 52.5789 63.6770 

Average CPU time (s) 19.8200 105.3330 90.3453 88.4539 82.1792 108.4624 
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Figure 3. Convergence of algorithm for case 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Convergence of algorithm for case 4. 

Figure 3 shows the trend for convergence 

characteristics of active power losses using WDO 

algorithm. The active power loss minimization has 

dramatically decreased to 3.2327 (MW) and 3.2771 

(MW) without and with valve-point effect, respectively, 

which is considered 81.5905 % and 81.3376 % lower 

than the basic case, that is, the case without 

optimization. 

 

4.1.4. Case 4:  Emission optimization  

In this case, the emission reduction yielded 

0.1763 (ton/h), which is considered 97.7962 % lower 

than initial case. The optimal settings of control variables 

for individual objective functions are detailed in Table 1. 

The convergence characteristics of emission using 

WDO method is shown in Figure 4. 

 

4.1.5. Case 5: Cost and active loss optimization 

 The control variables of this case are tabulated 

in detail in Table 2. The cost in this case has resulted in 

828.44 ($/h) and 861.32 ($/h) w/o and with valve-point, 

respectively. The active power loss w/o and with valve-

point effect are, respectively, 5.7412 (MW) and 6.3312 

(MW). 

 

4.1.6. Case 6: Cost and emission optimization  

The bi-objective optimization considering the 

cost and the emission are tabulated in Table 2. The 

control variables of this case are tabulated in detail in 

Table 2. The cost has resulted in 801.41 ($/h) and 

826.29 ($/h) w/o and with valve-point effect, 

respectively. Figure 5 shows the convergence 

characteristics obtained in cases 5 and 6. 

 

4.1.7. Case 7: Cost, Active Power Loss and Emission  

The IEEE 30-bus control variables of multi-

objective considering cost, active power loss and 

emission are presented in detail in Table 2. 
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Table 2. Bi-objective results of IEEE 30-bus system 

Control 

variables 

Optimal values 

Case 5 Case 6 Case 7  

w/o valve with valve 
w/o 

valve 
with valve w/o valve-point  

valve-

point  

PG2 (MW) 54.8769 48.6969 49.8438 28.2085 51.2691 52.6613 

PG5 (MW) 30.2127 27.5559 21.8352 15.9615 29.3629 28.9637 

PG8 (MW) 34.0291 34.7321 21.3200 10.0390 34.8815 28.3500 

PG11 (MW) 26.0009 22.2444 13.1581 10.0000 22.1273 22.6876 

PG13 (MW) 21.4080 21.3438 12.0000 12.0000 22.3051 22.3247 

V1 (pu) 1.0708 1.0766 1.0781 1.0890 1.0737 1.0794 

V2 (pu) 1.0588 1.0612 1.0627 1.0576 1.0589 1.0648 

V5 (pu) 1.0286 1.0339 1.0302 1.0266 1.0298 1.0363 

V8 (pu) 1.0421 1.0463 1.0394 1.0318 1.0412 1.0400 

V11 (pu) 1.0695 1.0425 1.0217 1.0110 1.0526 1.0176 

V13 (pu) 1.0465 1.0557 1.0261 0.9998 1.0419 1.0351 

Qcom10 

(MVAr) 
1.9299 2.2378 2.3725 4.4450 4.6826 3.2852 

Qcom12 

(MVAr) 
3.5779 2.7680 2.8893 4.3708 3.3781 1.3729 

Qcom15 

(MVAr) 
4.2918 2.1745 1.8944 1.9876 3.9585 3.8477 

Qcom17 

(MVAr) 
2.1102 2.3225 3.1717 4.6924 1.1924 2.4007 

Qcom20 

(MVAr) 
2.2800 3.6888 2.3260 4.3612 3.0944 1.9439 

Qcom21 

(MVAr) 
2.0265 2.3431 1.9763 4.3877 2.3942 3.6115 

Qcom23 

(MVAr) 
2.6643 1.5274 1.6074 2.1420 4.6949 2.3554 

Qcom24 

(MVAr) 
2.2253 2.0667 3.6352 4.3589 2.3718 2.0941 

Qcom29 

(MVAr) 
3.9133 2.3475 1.5725 0.1540 1.1799 3.3638 

T6-9 0.9809 0.9753 1.0293 1.0801 0.9914 0.9890 

T6-10 1.0281 0.9985 0.9314 1.0017 1.0167 0.9832 

T4-12 1.0128 0.9823 1.0146 0.9950 1.0157 0.9978 

T27-28 0.9987 0.9824 1.0357 0.9273 0.9878 0.9453 

Cost in ($/h) 828.4400 861.3200 801.4100 826.2900    822.5800 863.0300 

Active 

power loss in 

(MW) 

5.7412 6.3312 8.9817 11.9343 

6.0390 6.4499 

Emission in 

(ton/h) 

    0.2524 0.2557 0.3106 0.4700 
0.2499 0.1783 

Slack 

generator in 

(MW) 

122.6137 135.1582 

174.2246 219.4134 129.4931 134.8625 

Average 

CPU time (s) 

112.5017 121.6664 99.8236 95.8352 
79.0636 73.8949 
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Figure 5. Convergence of algorithm for cases 5 and 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Convergence of algorithm for case 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Convergence algorithm for case 7 with different population size. 
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When the valve-point is not in consideration, de 

generation cost is the 822.58 ($/h) and 863.03 ($/h) with 

valve-point effect is in consideration. The active power 

losses and emission w/o and with valve-point effect for 

this case are, respectively, 6.039 (MW), 6.4499 (MW), 

0.2499 (ton/h) and 0.1783 (ton/h). 

Figure 6 shows the convergence characteristics 

of multi-objective optimization obtained in case 7 without 

and with valve-point effect with respect the number of 

generation under cost optimization, losses optimization 

and emission optimizations using proposed method. 

For the IEEE-30 bus system, 24 control 

variables (5 generators outputs excluding slack bus, 6 

generators magnitude voltages, 4 transformers tap and 

9 reactive powers compensators) were optimized. Under 

the same conditions i.e. control variables limits, 

constraints and system data, the optimal solutions of 

IEEE 30-bus test system using the WDO algorithm 

reported in this paper are compared to some other 

techniques reported in the literature.  

The parameters of WDO method used in this 

paper are the friction coefficient, α=0.4, the gravitational 

constant g=0.2, the wind velocity vector, v=3, the 

coefficient RT=3 and the Coriolis constant, c=0.4. 

The developed WDO has been implemented 

and used to solve the OPF and EI problems of IEEE 30-

bus system under varying operating conditions. Figure 7 

shows the convergence characteristics of WDO method 

for case 6 with various population sizes applied to IEEE 

30-bus system.  

It is clearly shown that the WDO could effectively 

find the optimum solution before the maximum iteration 

was reached. 

The proposed method to solve the OPF and the 

EI problems is considered to have given the best results 

because the results obtained using the WDO method are 

better compared to those published recently in several 

researches papers. 

From Figures 5 and 6, all cases study of bi-

objective and multi-objective results obtained the 

minimum values after 120 iterations. 

 

4.2. IEEE 57-bus test system 

In this case, the IEEE 57-bus system is 

considered to investigate the effectiveness of the 

proposed algorithm. The IEEE 57-bus system consists 

of 7 generators at buses 1, 2, 3, 6, 8, 9, and 12, 17 

transformers are located at branches 19, 20, 31, 37, 41, 

46, 54, 58, 59, 65, 66, 71, 73, 76, and 80, 3 shunts are 

considered at buses 18, 25 and 53, and 80 transmission 

lines. The single-line diagram of this system and the 

detailed data are given in [89]. 

 

4.2.1. Case 1: Cost optimization  

The optimal settings of control variables for 

individual objective functions are detailed in Table 3. The 

convergence characteristic of this case is shown in 

Figure 8. 

 

4.2.2. Case 2: Cost and power losses optimization 

The optimal settings of control variables for bi-

objective functions are detailed in Table 3. The 

convergence characteristic of this case is shown in 

Figure 8. 

 

4.2.3. Case 3: Cost and emission optimization 

The optimal settings of control variables for bi-

objective functions are detailed in Table 3. The 

convergence characteristic of this case is shown in 

Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Convergence algorithm for cases 1, 2, 3 and 4 of IEEE 57-bus system. 
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Table 3. Results of cases 1,2,3 and 4 of IEEE 57-bus system 

Control variables Optimal values 

 Case 1 Case 2 Case 3 Case 4 

PG2 (MW) 54.6750 71.4940 91.6446 43.0780 

PG3 (MW) 73.2220 74.9188 43.1966 81.3522 

PG6 (MW) 59.9617 15.2784 55.7033 42.9193 

PG8 (MW) 482.8535 501.7457 503.7254 474.0350 

PG9 (MW) 98.0371 35.0817 31.7962 58.8914 

PG12 (MW) 336.7256 383.2472 388.1839 389.1949 

V1 (pu) 1.0339 1.0094 1.0549 1.0024 

V2 (pu) 1.0238 0.9962 1.0489 0.9914 

V3 (pu) 1.0283 1.0129 1.0356 1.0145 

V6 (pu) 1.0389 1.0318 1.0408 1.0295 

V8 (pu) 1.0365 1.0506 1.0439 1.0432 

V9 (pu) 1.0185 1.0290 1.0124 1.0271 

V12 (pu) 1.0361 1.0519 1.0104 1.0546 

Qcom18 (MVAr) 6.2847 10.9428 28.5455 14.7010 

Qcom25 (MVAr) 19.4961 15.0816 20.3682 14.9048 

Qcom53 (MVAr) 18.8091 15.3732 20.1136 9.9356 

T4-18 1.0181 0.9721 0.9765 0.9860 

T4-18 0.9366 0.9880 1.0544 1.0089 

T21-20 1.0331 1.0687 1.0546 0.9787 

T24-25 1.0428 0.9617 1.0062 1.0060 

T24-25 0.9499 0.9863 1.0062 1.0094 

T24-26 0.9779 0.9732 0.9981 1.0603 

T7-29 1.0351 0.9692 0.9963 0.9922 

T32-34 1.0354 1.0058 1.0342 1.0079 

T11-41 0.9365 0.9975 0.9864 1.0170 

T15-45 0.9537 0.9190 0.9796 0.9402 

T14-46 0.9994 1.0349 0.9960 1.0269 

T10-51 1.0011 0.9867 0.9953 0.9702 

T13-49 0.9735 1.0581 0.9925 1.0203 

T11-43 1.0853 0.9658 0.9584 0.9746 

T40-56 0.9419 1.0243 1.0366 0.9895 

T39-57 0.9664 0.9654 0.9619 1.0027 

T9-55 1.0132 1.0426 0.9637 1.0173 

Cost in ($/h) 42075.10 42436.76 41883.07 42388.09 

Power losses in (MW) 23.89496 23.0491 27.1184 20.6044 

Emission in (ton/h) 2.2788 3.2567 1.9167 2.4624 

Slack generation (MW) 164.1014 189.2383 154.0954 179.5996 

CPU time (min) 23.6500 20.2135 21.2408 18.0218 
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Methods Ref. Cost ($/h) Losses (MW) Emission ($/ton ) 

Proposed - 801.4100 5.7412 0.2524 

MSA [53] 859.1915 4.5404 0.2289 

EGA [42] 822.8700 5.6130 - 

TLBO [42] 828.5300  5.2883 - 

IABC [24] 854.9136 4.9820 0.2280 

PSO [25] 878.8731 7.8109 0.2253 

MPSO [53] 859.5841 4.5409 0.2287 

DE [42] 828.5900 5.6900 - 

PSOGSA [60] 822.4063 5.4681 - 

MDE [53] 868.7138 4.3891 0.2252 

MFO [53] 858.5812 4.5772 0.2294 

FPA [53] 855.2706 4.7981 0.2295 

MOGW [88] 847.9695 4.5886 0.2229 

MICA [87] 848.0544 4.5603 1.4171 

 

 

 

 

Table 4. Comparison of obtained results for the case 4 of IEEE 30-bus system. 

Methods Ref.  Cost ($/h) Losses (MW) Emission ($/ton) 

Proposed - 954.3807 5.1640 0.2150 

 GA [3] 936.6200 9.7000 0.2117 

 HGA [28] 984.9400 10.4300 - 

MSA [53] 944.5003 3.2858 0.2048 

MPSO [53] 879.9464 7.0467 0.2324 

PSGWO [96] 944.5120 3.2358 0.2048 

DE [23] 963.0010 - - 

MDE [53] 927.8066 4.8539 0.2092 

MFO [53] 945.4553 3.4295 0.2048 

FPA [53] 948.9490 4.4920 0.2052 

ABC [17] 944.4391 3.2470 0.2048 

IABC [24] - - 0.1943 

MOGWO [3] 945.3785 3.5519 0.2049 

CSA [85] 950.9308 3.5708 0.2010 

HPSO-DE [86] - - 0.2048 
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4.2.4. Case 4: Cost, losses and emission 

optimization  

The optimal settings of control variables for 

multi-objective functions are detailed in Table 3. The 

convergence characteristic of this case is shown in 

Figure 8. 

Tables 4 and 5 shows a comparison between 

the obtained single and multi-objective results of costs, 

power losses and emission with the results obtained in 

literature. 

 

5. Conclusion 

The WDO approach is successfully 

implemented in this paper to find the optimum control 

variables of OPF and EI problems for several cases 

studies using two power systems which are IEEE 30-bus 

and IEEE 57-bus test systems. 

The versatility of the OPF and the EI are 

illustrated by different cases by changing of the 

parameters of the WDO approach such as the friction 

coefficient, α, the gravitational constant g, the velocity 

vector of the wind, v, the RT coefficient and the Coriolis 

constant, c.  

The WDO approach is considered to have the 

capacity to get global solutions with stable convergence, 

and this is clear from the results obtained from all cases 

of simulations mentioned previously. Therefore, it can be 

recommended to future researchers as a promising this 

algorithm for solving some more complex engineering 

optimization problems. However, we have to mention 

that it becomes slow if the numbers of system variables 

are increased. It is found that the CPU time increases 

rapidly as system size increases (number of variables 

augmented) and the convergence slows down. 

Finally, the result obtained by WDO approach is 

quite comparable with other methodology used for the 

OPF and EI problems.     
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