

REVIEW ARTICLE

INTERNATIONAL RESEARCH JOURNAL OF MULTIDISCIPLINARY TECHNOVATION

Instrumental Analysis of Chlordiazepoxide in Different Matrices

Lobna M. Abdel-Aziz¹, Ahmed A. Soror¹, Ahmed A. Hassan¹, Ahmed S. Ali¹,

Ahmed A. Hafez¹, Ahmed A. Hemdan¹, Mahmoud M. Sebaiy^{1,*},

¹ Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt. *Corresponding authors email: <u>mmsebaiy@zu.edu.eg</u>, <u>sebaiym@gmail.com</u> DOI: <u>https://doi.org/10.34256/irjmt2151</u> Received: 10-06-2021, Revised: 01-08-2021; Accepted: 05-08-2021, Published: 07-08-2021

Abstract: Chlordiazepoxide is considered one of most important sedative and hypnotic benzodiazepines drugs which is currently used all over the world with the increased rate of anxiety drugs. In this literature review, we will introduce the pharmacological action of this drug in addition to most of up-to-date reported methods that have been developed for determination of chlordiazepoxide in its pure form, combined form with other drugs, combined form with degradation products, and in biological samples. Most of the reported analytical methods will focus on spectroscopic, chromatographic and electrochemical techniques.

Keywords: Benzodiazepines, Chlordiazepoxide, Pure form, Degradation products, Biological samples.

Introduction

In 1957, Hoffman La Roche laboratory synthesized chlordiazepoxide (CDZO), the first benzodiazepine, which represent one of the most widespread and primarily classes of drugs used for the treatment of psychiatric disorders, anxiety and insomnia [1, 2]. After two months of laboratory testing, the sedative effect of this compound was confirmed to be introduced and approved by the FDA in 1960 under several trade names as (Libritable and Librium) as capsules, tables and injection [3].

Many structural derivatives of CDZO were synthesized in the following years as for example (oxazepam and diazepam), which approved that they have much stronger sedative effect, and furthermore other benzodiazepines by targeted synthesis, allowed to the production with other characteristic hypnotic and/or anticonvulsant functions, with different biological half-life, to be allowed to a larger extent, and at the same time, problems related to drug abuse were reported [2].

As such, in this review article, CDZO has been studied in respect of chemical characters, mode of action and most reported analytical methods that have been developed for determination of this drug in different matrices.

Figure 1. Chemical structure of CDZO

Pharmacological action of CDZO

CDZO is chemically known as 7-chloro-2methylamino5-phenyl-3H-I,4-benzodiazepine-4-oxide (Figure 1), it is a benzodiazepine class sedative and hypnotic medication showing powerful antianxiety effects in humans used to enhance effectively the effect of the neurotransmitter gamma-amino butyric acid (GABA) complex formation [1,4], which strengthens pharmacological activity of benzodiazepine derivatives related not only to their anxiolytic activity, but also to sedative and hypnotic effect, skeletal muscle relaxant and anticonvulsant activity [2].

However, further study showed, that benzodiazepines intensify the strength of action by acting in binding target sites as agonists by allosteric interaction, increasing GABA binding level, but they have no effect on GABAA receptor activity in the

absence of γ -aminobutyric acid. However, they decrease GABA affinity to GABAA receptor complex with chloride channel, indirectly, increasing frequency, but not the chloride channel opening duration, allowing increased amount of chloride ions penetration under a concentration gradient into the cell [2].

Centrally, Benzodiazepines are used as muscle relaxants without a crucial effect on neuromuscular signaling transduction pathway in motor endplate through the inhibition of multisynaptic impulses [2].

Review of analytical methods

Various techniques were used for the analysis of CDZO in pure forms, in their pharmaceutical formulations and in biological fluids. The available reported methods in the literature can be summarized as follows:

1. Spectroscopic methods

1.1 Spectrophotometric & Spectrofluorimetric methods

Drugs	Matrix	Method or reagent	λ _{max} (nm)	Linearity range	LOD	Ref.
CDZO	Tablets	Indirect method via charge-transfer complex formation with metol	516	3-60 µg/mL	1.16 µg/mL	[1]
CDZO	Tablets	Complexion reaction with palladium chloride	424	5-120 μg/mL	0.20 µg/mL	[3]
CDZO	Tablets	Oxidative coupling reaction with phenothiazine	602	0.1- 50µg/mL	0.11 µg/mL	[4]
CDZO	Blood	Combination of ultraviolet spectrophotometry and the Bratton-Marshall reaction	550	0.1-3.0 mg%		[5]
CDZO and clidinium bromide	Tablets	Ratio spectra derivative spectrophotometry	243.1	2.0 - 38.0 µg/mL		[6]
CDZO and Demoxepam	Tablets	Difference spectrophotometry	269	0 - 12.5 μg/mL		[7]
CDZO and Diazepam	Tablets	Combined polynomials method	230-318	0.1-0.7 mg/100mL		[8]
CDZO and Nitrazepam	Tablets	Diazocoupling with ethyl acetoacetate	408	l-16 μg/mL		[9]
CDZO and Amitriptyline HCL	Tablets	Multivariate calibration method	205-305	0.0-4.0 ppm		[10]
CDZO and Mebeverine HCL	Binary Mixture	Novel univariate spectrophotometric methods via different manipulation pathways	200-400	1-12 µg/mL		[11]
CDZO and Trifluoperazine	Tablets	Multicomponent analysis method	245	2-50 μg /mL		[12]
CDZO and 2-amino- s-5- chlorobenzophenone impurity	Degradation product	Fluorimetric method (cerium (IV) sulphatee in phosphoric acid)	λ _{ex} 405 λ _{em} 440 and 465	5 x 10 ⁻⁸ - 3 x 10 ⁻⁵ g/mL		[13]
CDZO	Pharmaceutical dosage form, urine and plasma	Fluorimetric method (Fluorescamine)	λex 390 λem 486	0.25-6 μg/mL		[14]

2. Chromatographic methods

2.1 HPLC methods

Drugs	Matrix	Column	Mobile phase	Detector	Linearity range	LOD	Ref.
CDZO and mebeverineHCI	Tablets	RP-C ₈ (octylsilyl)	Acetonitrile–0.05 M disodium hydrogen phosphate-triethyl amine (50:50:0.2, v/v/v), pH 2.5	UV at 247 nm	2.5–150 μg/mL	0.04 µg/m L	[15]
CDZO	Water, urine, plasma and tablets	MZ ODS- C ₁₈ (250 × 4.6 mm, 5 μm)	Acetonitrile-water (60:40, v/v)	UV at 254 nm	0.004–10 µg/mL	0.001 2 μg/m L	[16]
CDZO	Waste water and tablets	Supelco C ₁₈ (25 cm x 4.6 mm. 5 µm)	Methanol-acetonitrile- 0.05 MKH ² PO ₄ (40: 20 :40 v/v/v)	UV at 246 nm	0.01-0.20 mg/mL	2 µg/m L	[17]
CDZO and Clidinium Bromide	Tablets	Phenomenex Luna C ₁₈ (250 mm x 4.6 mm, i.d., 5 microm)	Potassium dihydrogen phosphate buffer (0.05 M, pH 4.0adjusted with 0.5% ortho phosphoric acid) methanol- acetonitrile (40:40:20, v/v/v)	UV at 220 nm.	5—500 μg/mL	0.122 μg/m L	[18]
CDZO and diazepam	Urine and plasma	Zorbax SB-C ₁₈ (Agilent)	Acetonitrile:KH2PO4 buffer solution (5.0 mmol L-1: pH 6.0) (70:30, v/v)	UV at 220 nm	0.005–10.0 µg/mL	0.001 2 µg/m L	[19]
CDZO and amitriptyline hydrochloride	Tablets	Waters Spherisorb [®] C ₁₈	Methanol: Acetonitrile:0.2M Orthophosphoric acid, pH 4.5, 56:24:20.	UV at 240 nm	10-320 ng/mL	4.5 ng/m L	[20]
CDZO, diazepam, clonazepam, midazolam, flurazpam, and lorazepam	Soft drinks	C ₁₈ (250 mm x 4.6 mm, 5µm)	15 mM phosphate buffer: methanol (50:50 v/v)	UV at 245 nm	0.5- 10 μg/ mL	0.01 µg/ mL	[21]
CDZO, desmethylchlord iazepoxide, demoxepam	Plasma	Hichrom'" C1 ₈ RPB	deionized water/ methanol/ acetonitrile/ acetic acid (51:28:16: 0'2, v:v; pH 3,7)	UV at 241 nm	0,125-10 mg/L	0-075 mg/L	[22]
CDZO and Trifluoperazine HCl	Tablet	Phenomenex (Torrance, CA) C ₁₈ column	methanol:water (97:03, v/v)	UV at 262 nm	0.5-5 μg/mL	0.05 µg/m L	[23]
CDZO	Tape water, river water, urine and plasma	C ₁₈ (150 mm, 4.6 mm, 5 μm)	ACN: water (40:60, v/v)	UV at 225 nm	0.006–10 µg/mL	0.001 4 µg/m L	[24]
CDZO, diazepam, benzodiazepine s	Serum	BondElut C ₁₈	35% acetronitrile and 65% 7 mM K ₂ HPO ₄ buffer adjusted to pH 3.7 with 0.1 M phosphoricacid.	UV at 242 nm	50 - 1000 ng/mL	25 ng/m L	[25]
CDZO, Clidinium bromide and dicyclomineHCl	Tablets	Kromasil C ₁₈	potassium dihydrogen phosphate buffer (0.05 M, pH 4.0adjusted with 0.5% orthophosphoric acid): methanol: acetonitrile (30:40:30, v/v/v)	UV at 270 nm	24-56 μg/mL	4.58 μg/m L	[26]
CDZO, Flurazepam Oxazepam Lorazepam Clonazepam	Urine Stomach content Tissue Bileand	Knauer 100-5 C ₁₈ (250 mm x 4.6 mm)	buffer phosphate (pH = 2.32) and acetonitrile (63:37).	PDA	0.1 - 10 µg/mL	0.05 µg/m L	[27]

Alprazolam Diazepam	Other biological samples						
CDZO Anticonvulsants, xanthines	Plasma	LiChrosorb RPଃ	Water – methanol – triethylamine (pH = 6.0) (43+57+0.25)	UV at 254 nm	0.58-5.76 mg/L	0.02 mg/L	[28]
Flunitrazepam CDZO,Clonaze pam, Oxazepam, Lorazepam, Nordiazepam, Diazepam, N- Desalkylfluraze pam	Plasma	LC- ₁₈ DB column (250 mm × 4.6 mm, 5 μm)	5 mM KH2PO4 buffer solution pH6.0:methanol: diethyl ether (55:40:5, v/v/v)	UV at 245 nm	50–1200 ng/mL	30 ng/m L	[29]
CDZO, Clidinium bromide, DicyclomineHCI , Rabeprazole	Capsules	ODS C18 RP	Potassium dihydrogen phosphate buffer (0.05 M, pH 4.5 adjusted with 0.5% orthophosphoric acid): Acetonitrile (80:20 v/v)	UV at 215 nm	10-30 μg/mL	0.860 3 µg/m L	[30]
CDZO,Other benzodiazepine s and their metabolites	Serum	Conventional Reversed- phase C ₁₈	Gradient mobile phases: 1.Solvent A (10 mM aqueous ammonium formate containing 0.1% formic acid) 2.Solvent B (methanol containing 0.1% formic acid)	MS/MS, M = 283.2 m/z	5-500 ng/mL	1.0 ng/m L	[31]
CDZO and other benzodiazepine s	Oral Fluids	Zorbax Eclipse XDB C ₁₈	Solvent A (20 mM ammonium formate pH 8.6; solvent B was acetonitrile. (50:50 v/v)	MS/MS, M = 283 m/z	0.5-40 ng/mL	0.33 ng/m L	[32]
CDZO, other benzodiazepine s and their 6 metabolites and zolpidem	Human and rat hair	Zorbax Eclipse XDB-C ₁₈	Gradient mobile phase: 1. Solvent A (2 mM ammonium formate/ 0.2% formic acid in water Solvent B (2 mM ammonium formate/ 0.2% formic acid in acetonitrile	MS/MS, M1 = 227.1 m/z M2 = 283.2 m/z	0.5–5 ng/mL	0.05 ng/m L	[33]
CDZO, Other benzodiazepine s, flumazenil,zalep lone, zolpidem and zopiclone	Plasma	Merck LiChro CART	Gradient mobile phase: Solvent A (5 mM aqueous ammonium formate adjusted to pH 3 with formic acid Solvent B (acetonitrile)	MS/MS, M1 = 269 m/z M2 = 284 m/z	0.2–3.75 mg/L	0.01 mg/L	[34]
CDZO, other benzodiazepine s, opioids, barbiturates, amphetamines and cocaine	Urine	Poroshell EC- C ₁₈ (2.1 100 mm, 2.7 μm, Agilent)	0.1% acetic acid in water and methanol	MS/MS, M1 = 282.0798 m/z M2 = 227.0499 m/z M3 = 57.0451 m/z	20–500 ng/mL	13.7 ng/m L	[35]

Mahmoud M. Sebaiy et.al., /2021

CDZO, other benzodiazepine s, Opiates, Synthetic Opiates, and PCP	Waste water	Synergi Hydro-RP	Gradient mobile phase: Solvent A (acetonitrile containing 0.1% formic acid) Solvent B (water with 0.1% formic acid)	MS/MS, M = 227.3 m/z	0.075-10 µg/L	0.075 ng/m L	[36]
CDZO, Other benzodiazepine s and hypnotic drugs	Blood	Infinity LabPoroshell 120 EC-C ₁₈	Gradient mobile phase: Solvent A (0.05% formic acid in water (v/v) Solvent B (0.05% formic acid in acetonitrile (v/v)	MS/MS, M1 = 227.1 m/z M2 = 283.1 m/z	1–200 ng/mL	0.25 ng/m L	[37]
CDZO and other drugs	Postmortem blood	Raptor Biphenyl columns coupled with Raptor Biphenyl EXP Guard Column Cartridges	Gradient mobile phase: Solvent A (1:1 hexane and ethyl acetate (v/v) Solvent B (dichloromethane/isopropano I/ammonium hydroxide (78:20:2, v/v)	MS/MS, M1 = 227.1 m/z M2 = 283.1 m/z	1–1000 ng/mL	0.4 ng/m L	[38]
CDZO, other benzodiazepine s and psychoactive substance	Urine	ACE5 C ₁₈	Gradient mobile phase: Solvent A (5%acetonitrile with 0.1% formic acid) Solvent B (95%acetonitrile with 0.1% formic acid)	MS/MS, M1 = 283 m/z M2 = 227 m/z	1-100 ng/mL	0.5 ng/m L	[39]
CDZO, other benzodiazepine s, metabolites and benzodiazepine -like substances	Blood	Xterra MS C ₁₈ column	methanol/formic acid approximately 0.006 M (pH 3, 30–60% (v/v) methanol)	MS/MS, M1 = 284 m/z M2 = 269 m/z M3 = 227 m/z	0.006–2.0 mg/L	1.7 ng/m L	[40]
CDZO, Pharmaceutical s and other abuse drugs	Post-mortem liver	Acquity BEH C ₁₈	Gradient mobile phase: Solvent A (water, 0.1% formic acid) Solvent B (methanol, 0.1% formic acid)	MS/MS, M1 = 227 m/z M2 = 282 m/z	5-1500 ng/g	3.51 ng/g	[41]
88 psychoactive drugs include CDZO and their metabolites	Postmortem blood	Hypersil Gold aQ column	Gradient mobile phase : Solvent A (0.1% formic acid) Solvent B (methanol)	MS/MS, M1 = 227.1 m/z M2 = 192.1 m/z	0.05-1 µg/mL	3.2 ng/m L	[42]

2.2 HPTLC methods

Drugs	Matrix	Stationary phase	Mobile phase	Detector	Linearity range	LOD	Ref.
Imipramine HCI and CDZO	Tablets	Precoated silica gel 60 F254 plates	Carbon tetrachloride- acetone-triethylamine (pH 8.3; 6 + 3 + 0.3, v/v/v)	UV at 240 nm	20–240 ng/spot	3.3 ng/spot	[43]

Mahmoud M. Sebaiy et.al., /2021

Mebeverine	Tablets	Pre-coated	Ethyl acetate: methanol	UV at	1-14		[44]
hydrochloride and CDZO		silica gel 60F254	(8:4, v:v)	222 nm	µg/band		
Mebeverine hydrochloride and CDZO	Tablets	Silica gel plates	Chloroform: methanol: ammonia (9.5: 0.5: 0.1, (v/v/v)	UV at 220 nm	50-600 ng/spot	0.44596	[45]
CDZO and Clidinium Bromide	Tablets	Silica gel 60 GF2S4 plates	Methanol: acetonitrile: water: glacial acetic acid in the ratio 2.0: 6.5: 1.0 :0.5	UV at 217 nm	2.2-12.2 g		[46]

3. Electrochemical methods

Drugs	Matrix	Electrode	Linearity range	LOD	Ref.
CDZO	Tablets	Graphene–carbon paste electrode (GCPE) modified with imprinted polymer nanoparticles (nano-MIP)	6.0 × 10 ⁻¹⁰ - 7.5 × 10 ⁻⁸ M	2.61 × 10 ^{−10} M	[47]
CDZO	Tablets	Mercury electrode & glassy carbon electrode	2 x 10 ⁻⁷ – 5 x 10 ⁻⁶ M	5 x 10 ⁻⁸ M	[48]
CDZO	Tablets & Human serum	Mercury electrode	5×10⁻ ⁹ M - 2×10⁻ ⁷ M	6.6 × 10 ⁻¹⁰ M	[49]
CDZO & diazepam	Tablets	Sonogel-Carbon electrode (SngCE) modified with bentonite (BENT)	0.034 – 0.302 μg/mL	16.0 and 5.0 ng/mL	[50]
CDZO	Artificial serum	Hanging mercury drop electrode	8.0 ×10 ⁻⁹ - 9.5 ×10 ⁻⁸ M	6.6 × I0 ⁻⁹ M	[51]
CDZO	Tablets	ion-selective electrodes (ISEs)		6.7 × 10 ⁻⁶ M (CWE) 7.2 × 10 ⁻⁶ M (CWE-T)	[52]

Conclusion

This literature review represents an up to date survey about all reported methods that have been developed for determination of Chlordiazepoxide in its pure form, combined form with other drugs, combined form with degradation products, and in biological samples such as liquid chromatography, spectrophotometry, spectroflourimetry, electrochemistry, etc...

References

[1] H. Hadi, M. Jamal, Spectrophotometric- Indirect Method for Chlordiazepoxide Estimation in Dosage Forms via Charge- Transfer Complex Formation with Metol, Jordan Journal of Pharmaceutical Sciences, 13 (2020) 77-84.

- [2] P. Szatkowska, M. Koba, P. Kośliński, J. Wandas, T. Bączek, Analytical methods for determination of benzodiazepines. A short review, Open Chemistry, 12 (2014) 994-1007. [DOI]
- [3] J. A. A. Sattar, Application of Chlordiazepoxide as a Complex with Palladium for the Spectrophotometric Determination of Certain Benzodiazepine Drug, Al-Mustansiriyah Journal of Science, 19 (2008) 52-58.

- [4] M. J. Ahmed, Spectrophotometric Determination of Chlordiazepoxide in Pharmaceutical Formulations via Oxidative Coupling Reaction with Phenothiazine, Iraqi Journal of Pharmaceutical Sciences (P-ISSN: 1683-3597, E-ISSN: 2521-3512), 27 (2018) 7-14. [DOI]
- [5] J. H. Riddick Jr, An ultraviolet and visible spectrophotometric assay method for chlordiazepoxide, Clinical biochemistry, 6 (1973) 189-199. [DOI]
- [6] S. A. Özkan, N. Erk, Z. Sentürk, Simultaneous determination of two-component mixtures in pharmaceutical formulations containing chlordiazepoxide by ratio spectra derivative spectrophotometry, Analytical Letters, 32 (1999) [DOI]
- [7] A. G. Davidson, Assay of chlordiazepoxide and demoxepam in chlordiazepoxide formulations by difference spectrophotometry, Journal of pharmaceutical sciences, 73 (1984) 55-58.
 [DOI]
- [8] M. Bedair, M. A. Korany, M. E. Abdel-Hamid, Spectrophotometric determination of chlordiazepoxide and diazepam using orthogonal polynomials, Analyst, 109 (1984) 1423-1426. [DOI]
- [9] M. I. Walash, M. Rizk, A. El-Brashy, Spectrophotometric determination of chlordiazepoxide and nitrazepam, Talanta, 35 (1988) 895-898. [DOI]
- [10] A. H. Sarrafi, Z. Khodakarami, M. Karkeabadi, Simultaneous spectrophotometric determination of amitriptyline hydrochloride and chlordiazepoxide in pharmaceutical tablets by multivariate calibration method, E-journal of chemistry, 6 (2009) S111-S116. [DOI]
- H. M. Lotfy, Y. M. Fayez, A. M. Michael, C. K. [11] Nessim, Simultaneous determination of hydrochloride mebeverine and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 155 (2016) 11-20. [DOI]
- [12] R. B. Saudagar, S. Saraf, S. Saraf, Spectrophotometric determination of chlordiazepoxide and trifluoperazine hydrochloride from combined dosage form, Indian journal of pharmaceutical sciences, 69 (2007) 149. [DOI]

- [13] L. Szekelhidi, A. Lapat, I. Hornyák, Spectrofluorimetric determination of 2-amino-5chlorobenzophenone impurity in chlordiazepoxide hydrochloride, Analytica Chimica Acta, 22 (1989) 309-310. [DOI]
- [14] J. T. Stewart, J. L. Williamson, Fluorometric determination of chlordiazepoxide in dosage forms and biological fluids with fluorescamine, Analytical chemistry, 48 (1976) 1182-1185. [DOI]
- [15] R. S. Haggag, R. A. Shaalan, T. S. Belal, Validated HPLC determination of the two fixed dose combinations (chlordiazepoxide hydrochloride and mebeverine hydrochloride; carvedilol and hydrochlorothiazide) in their tablets, Journal of AOAC International, 93 (2010) 1192-1200. [DOI]
- [16] S. Khodadoust, M. Ghaedi, Optimization of dispersive liquid-liquid microextraction with central composite design for preconcentration of chlordiazepoxide drug and its determination by HPLC-UV, Journal of separation science, 36 (2013) 1734–1742. [DOI]
- [17] N. R. Ahmed, L. H. Al Sadoon, Determination of Chlordiazepoxide in Pure Drug Samples, Dosage Forms Pharmaceutical and Environmental Wastewater Samples Using High Performance Liquid Chromatographic Method, International Journal of Enhanced Research in Science, Technology & Engineering, 6 (2017) 1-5.
- [18] A. Pathak, P. Rai, S. J. Rajput, Stabilityindicating HPLC method for simultaneous determination of clidinium bromide and chlordiazepoxide in combined dosage forms, Journal of chromatographic science, 48 (2010) 235-239. [DOI]
- [19] Α. Pebdani. S. Khodadoust. M. S. Talebianpoor, H. R. Zargar, V. Zarezade, Preconcentration and determination of chlordiazepoxide and diazepam drugs using dispersive nanomaterial-ultrasound assisted microextraction method followed by high performance liquid chromatography, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1008 (2016) 146-155. [DOI]
- [20] F. Ali, G. N. Singh, Application of an LC/HPLC method development and validation for the simultaneous estimation of Amitriptyline hydrochloride and chlordiazepoxide in tablet dosage form by using a reverse phase

technique, Scholars Research Library, 7 (2015) 172-177.

- [21] K. Soltaninejad, M. Karimi, A. Nateghi, B. Daraei, Simultaneous determination of six benzodiazepines in spiked soft drinks by high performance liquid chromatography with ultra violet detection (HPLC-UV), Iranian journal of pharmaceutical research: IJPR, 15 (2016) 457-463.
- [22] D. J. Garretty, K. Wolff, A. W. Hay, Microextraction of chlordiazepoxide and its primary metabolites, desmethylchlordiazepoxide and demoxepam, from plasma and their measurement by liquid chromatography, Annals of clinical biochemistry, 35 (1998) 528-533. [DOI]
- [23] S. K. Patel, N. J. Patel, Simultaneous RP-HPLC estimation of trifluoperazine hydrochloride and chlordiazepoxide in tablet dosage forms, Indian Journal of Pharmaceutical Sciences, 71 (2009) 545-547. [DOI]
- [24] F. Momtazan, S. Khodadoust, F. Zeraatpisheh, M. Behbahani, Synthesis of mesoporous silica for adsorption of chlordiazepoxide and its determination by HPLC: Experimental design, Journal of separation science, 42 (2019) 3253-3260. [DOI]
- [25] T. J. Good, J. S. Andrews, The use of bondedphase extraction columns for rapid sample preparation of benzodiazepines and metabolites from serum for HPLC analysis, Journal of chromatographic science, 19 (1981) 562-566. [DOI]
- [26] A. Doki, S. K. Kamarapu, Method development and validation of RP-HPLC method for simultaneous estimation of clidinium bromide, chlordiazepoxide and dicyclomine hydrochloride in bulk and combined tablet dosage forms, International Journal of Pharma and Bio Sciences, 3 (2013) 152-161.
- [27] B. Behnoush, A. Sheikhazadi, E. Bazmi, A. Fattahi, E. Sheikhazadi, S. H. S. Anary, Comparison of UHPLC and HPLC in Benzodiazepines Analysis of Postmortem Samples: A Case–Control Study, Medicine, 94 (2015) e640. [DOI]
- [28] H. J. J. Willems, A. Van der Horst, P. N. F. C. De Goede, Haakmeester, G. J. (1985). Determination of some anticonvulsants, antiarrhythmics, benzodiazepines, xanthines, paracetamol and chloramphenicol by reversed

phase HPLC. PharmaceutischWeekblad, 7(4), 150-157. [DOI]

- K. B. Borges, E. F. Freire, I. Martins, M. E. P.
 B. de Siqueira, Simultaneous determination of multibenzodiazepines by HPLC/UV: Investigation of liquid–liquid and solid-phase extractions in human plasma, Talanta, 78 (2009) 233-241. [DOI]
- [30] U. Khan, S. V. Luhar, S. B. Narkhede, RP-HPLC method development and validation for simultaneous estimation of clidinium bromide, chlordiazepoxide, dicyclomineHCl and rabeprazole sodium in pharmaceutical dosage form, European Journal of Biomedical, 5 (2018) 628-634.
- [31] M. Nakamura, T. Ohmori, Y. Itoh, M. Terashita, K. Hirano, Simultaneous determination of benzodiazepines and their metabolites in human serum by liquid chromatography– tandem mass spectrometry using a highresolution octadecyl silica column compatible with aqueous compounds, Biomedical Chromatography, 23 (2009) 357-364. [DOI]
- [32] Moore, C. Coulter, K. Crompton, M. Zumwalt, Determination of benzodiazepines in oral fluid using LC-MS-MS, Journal of analytical toxicology, 31 (2007) 596-600. [DOI]
- [33] J. Kim, S. Lee, S. In, H. Choi, H. Chung, Validation of a simultaneous analytical method for the detection of 27 benzodiazepines and metabolites and zolpidem in hair using LC– MS/MS and its application to human and rat hair, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879 (2011) 878-886. [DOI]
- Kratzsch, O. Tenberken, F. T. Peters, A. A. [34] Weber, T. Kraemer, H. H. Maurer, Screening, library-assisted identification and validated quantification of 23 benzodiazepines, flumazenil, zaleplone, zolpidem and zopiclone in plasma by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. Journal of mass spectrometry, 39 (2004) 856-872. [DOI]
- [35] L. Tsai, T. I. Weng, Y. J. Tseng, H. K. L. Tan, H. J. Sun, C. H. Kuo, Screening and confirmation of 62 drugs of abuse and metabolites in urine by ultra-high-performance liquid chromatography–quadrupole time-offlight mass spectrometry, Journal of analytical toxicology, 37 (2013) 642-651. [DOI]

- Vol 3 Iss 5 Year 2021
- [36] W. Gul, S. W. Gul, B. Stamper, M. Godfrey, M. A. ElSohly, LC-MS-MS method development and analysis of stimulants, opiates, synthetic opiates, PCP, and benzodiazepines in wastewater. Preponderance of these drugs during football games, Methods in Molecular Biology, 1810 (2018) 149-182. [DOI]
- [37] L. Banaszkiewicz, M. K. Woźniak, M. Kata, E. Domagalska, M. Wiergowski, B. Szpiech, A. Kot-Wasik, Rapid and simple multi-analyte LC-MS/MS method for the determination of benzodiazepines and Z-hypnotic drugs in blood samples: Development, validation and application based three of on years toxicological analyses, Journal of Pharmaceutical and Biomedical Analysis, 191 (2020) 113569. [DOI]
- [38] A. I. Al-Asmari, Method for the identification and quantification of sixty drugs and their metabolites in postmortem whole blood using liquid chromatography tandem mass spectrometry, Forensic science international, 309 (2020) 110193. [DOI]
- [39] H. H. Lee, J. F. Lee, S. Y. Lin, B. H. Chen, Simultaneous identification of abused drugs, benzodiazepines, and new psychoactive substances in urine by liquid chromatography tandem mass spectrometry, The Kaohsiung journal of medical sciences, 32 (2016) 118-127. [DOI]
- B. E. Smink, J. E. Brandsma, A. Dijkhuizen, K. J. Lusthof, J. J. De Gier, A. C. G. Egberts, D. R. A. Uges, Quantitative analysis of 33 benzodiazepines, metabolites and benzodiazepine-like substances in whole blood by liquid chromatography–(tandem) mass spectrometry, Journal of Chromatography B, 811 (2004) 13-20. [DOI]
- [41] A. Orfanidis, H. Gika, G. Theodoridis, O. Mastrogianni, N. Raikos, Development of a UHPLC-MS/MS method for the determination of 84 pharmaceuticals and drugs of abuse in human liver, Journal of Chromatography B, 1151 (2020) 122192. [DOI]
- [42] C. Sempio, L. Morini, C. Vignali, A. Groppi, Simple and sensitive screening and quantitative determination of 88 psychoactive drugs and their metabolites in blood through LC–MS/MS: Application on postmortem samples, Journal of Chromatography B, 970 (2014) 1-7. [DOI]

- [43] S. K. Patel, N. J. Patel, Simultaneous determination of imipramine hydrochloride and chlordiazepoxide in pharmaceutical preparations by spectrophotometric, RP-HPLC, and HPTLC methods, Journal of AOAC International, 93 (2010) 904-910. [DOI]
- [44] A. M. Michael, Y. M. Fayez, C. K. Nessim, H. M. Lotfy, Comparative study of the resolution efficiency of HPLC and HPTLC-densitometric methods for the analysis of mebeverine hydrochloride and chlordiazepoxide in their binary mixture, European Journal of Chemistry, 7 (2016) 315-321. [DOI]
- [45] S. Patel, N. J. Patel, Spectrophotometric and chromatographic simultaneous estimation of amitriptyline hydrochloride and chlordiazepoxide in tablet dosage forms, Indian journal of pharmaceutical sciences, 71 (2009) 472. [DOI]
- [46] S. G. Walode, S. B. Bagade, M. P. Rode, M. R. Tajne, Simultaneous Estimation of Chlordiazepoxide and Clidinium Bromide in Combined Dose Tablet by High Performance Thin Layer Chromatography, Asian Journal of Chemistry, 17 (2005) 2517-2523.
- [47] Μ. Α. Motaharian, Μ. R. Hosseini, Electrochemical sensor based on a carbon paste electrode modified bv graphenenanosheets and molecularly imprinted polymer nanoparticles for determination of a chlordiazepoxide drug, Analytical Methods, 8 (2016) 6305-6312.
- [48] G. O. El-Sayed, S. A. Yasin, A. A. El Badawy, Adsorptive voltammetric determination of chlordiazepoxide in pure and dosage forms, Journal of Chemical and Pharmaceutical Research, 1 (2009) 225-232.
- [49] G. B. El-Hefnawey, I. S. El-Hallag, E. M. Ghoneim, M. M. Ghoneim, Voltammetric behavior and quantification of the sedativehypnotic drug chlordiazepoxide in bulk form, pharmaceutical formulation and human serum at a mercury electrode, Journal of pharmaceutical and biomedical analysis, 34 (2004) 75-86. [DOI]
- [50] A. H. Naggar, M. ElKaoutit, I. Naranjo-Rodriguez, A. E. A. Y. El-Sayed, J. L. H. H. de Cisneros, Use of a Sonogel-Carbon electrode modified with bentonite for the determination of diazepam and chlordiazepoxide hydrochloride in tablets and their metabolite oxazepam in urine, Talanta, 89 (2012) 448-454. [DOI]

- [51] Lorenzo, L. Hernandez, Adsorptive stripping voltammetry of chlordiazepoxide at the hanging mercury drop electrode, Analytica chimica acta, 201 (1987) 275-280. [DOI]
- [52] P. Gorelov, S. S. Ryasenskii, S. V. Kartamyshev, M. V. Fedorova, A solid-state ion-selective electrode with an ionic-electronic transducer for determining chlordiazepoxide, Journal of Analytical Chemistry, 60 (2005) 65-69.

Acknowledgement

The authors are thankful to National Research Centre, Giza, Egypt for supporting this work.

Funding

No funding was received for conducting this study.

Conflict of interest

The authors have no conflicts of interest to declare that they are relevant to the content of this article.

Does this article screened for similarity?

Yes

About the License

© The author(s) 2021. The text of this article is open access and licensed under a Creative Commons Attribution 4.0 International License