Electronic Supplementary Information

Phase equilibria in the CeO₂–La₂O₃–Gd₂O₃ system at 1250 and 1500 $^{\circ}\text{C}$

O.A. Korniienko *, O.I.Bykov, A.V. Sameljuk, Yu.M. Bataiev, S.V. Yushkevych

Frantsevich Institute for Materials Science Problems NAS, Kiev – UKRAINE, 3 Krzhizhanovsky str., Kyiv, 03680, Ukraine.

* Corresponding author email: kornienkooksana@ukr.net

DOI: https://doi.org/10.34256/irjmt2143

Received: 19-05-2021, Revised: 06-06-2021, Accepted: 08-06-2021, Published: 10-06-2021

Table S1. Phase composition and lattice parameters of the phases in the La_2O_3 -Gd₂O₃ system, annealed at 1600 °C for 10 h in air (according to XRD)

Chemical composition		Phase		Lattice	e paramete	ers of the	phases ((nm)	
(mo	ol %)	composition							
La ₂ O ₃	Gd ₂ O ₃			<a>*			<	B>	
			а	С	c/a	а	b	С	β
100	0	<a>*	0.6523	0.3855	0,5909	_	-	_	_
95	5	<a>*	0.6517	0.3837	0.5887	_	_	_	-
90	10	<a>*	0.6496	0.3817	0.5876	_	-	_	-
85	15	<a>*	0.6491	0.3809	0.5868	-	-	-	-
80	20	<a>*	0.6478	0.3797	0.5861	-	-	-	-
75	25	<a>*	0.6468	0.3750	0.5798	-	-	-	-
65	35	<a>*	0.6458	0.3737	0.5787	-	-	-	-
60	40	<a>*+	0.6447	0.3716	0.5764	1.4726	0.3632	0.9068	88.96
55	45	<a>*+	0.6449	0.3710	0.5753	1.4721	0.3641	0.9052	92.46
50	50	<a>*+	0.6446	0.3712	0.5758	1.4695	0.3634	0.9011	92.41
45	55	<a>*+	0.6448	0.3718	0.5766	1.4671	0.3621	0.9000	92.47
40	60	<a>*+	-	-	-	1.4597	0.3611	0.8968	92.55
35	65	<a>*+	-	-	-	1.4573	0.3597	0.8952	92.40
30	70		-	-	-	1.4579	0.3577	0.8925	92.05
25	75		-	-	-	1.4540	0.3579	0.8914	92.50
20	80		-	-	-	1.4514	0.3573	0.8882	92.53

15	85		-	-	-	1.4543	0.3563 0.8800	92.64
10	90		-	-	_	1.4446	0.3557 0.8905	92.28
5	95		_	-	_	1.4394	0.3549 0.8800	92.73
0	100		-	-	_	1.4341	0.3566 0.8773	93.25

At given conditions (at 1600°C for 10 h in air) the hexagonal modification of A-La₂O₃ unquenchable and hexagonal modification of La(OH)₃ was observed instead. Designation of phases: <A*>, solid solutions based on hexagonal modification of La₂O₃; , solid solutions based on monoclinic modification of Gd₂O₃

Table S2. Phase composition and lattice parameters of the phases in the La_2O_3 -Gd₂O₃ system, annealed at 1500 °C for 225 h in air (according to XRD)

Chen compc	nical osition	Phase composition	Lattice parameters of the phases (nm)						
(mol	%)								
La ₂ O ₃	Gd ₂ O ₃			<a>*			<	B>	
			а	С	c/a	а	b	С	β
100	0	<a>*	0.6523	0.3855	0.5909	-	_	-	-
95	5	<a>*	0.6494	0.3818	0.5879	-	-	-	-
90	10	<a>*	0.6491	0.3818	0.5882	-	-	-	-
85	15	<a>*	0.6481	0.3841	0.5926	-	_	_	_
80	20	<a>*	0.6479	0.3797	0.5860	_	-	-	-
75	25	<a>*	0.6468	0.3781	0.5846	_	-	-	-
70	30	<a>*	0.6470	0.3777	0.5838	_	-	-	-
65	35	<a>* +	0.6461	0.3747	0.5799	_	-	-	-
60	40	<a>* +	0.6464	0.3749	0.5799	1.3635	0.3562	0.8896	90.36
55	45	<a>* +	0.6460	0.3736	0.5783	1.4283	0.3556	0.8865	87.19
50	50	<a>* +	0.6458	0.3746	0.5800	1.4221	0.3542	0.8856	87.85
45	55	<a>* +	0.6467	0.3746	0.5792	1.4198	0.3523	0.8826	87.55
40	60	<a>* +	0.6471	0.3749	0.5794	1.44642	0.3656	0.8752	91.44
35	65		-	-	_	1.4588	0.3643	0.8973	91.44
30	70		-	-	-	1.4567	0.3635	0.8954	91.51
25	75		-	-	_	1.4540	0.3621	0.8926	91.22

20	80		-	-	-	1.4492	0.3610	0.8907	91.61
10	90		-	_	-	1.3907	0.3591	0.8818	87.38
0	100		-	-	-	1.4335	0.3566	0.8813	91.85

* At given conditions (at 1600°C for 10 h in air) the hexagonal modification of $A-La_2O_3$ unquenchable and hexagonal modification of $La(OH)_3$ was observed instead. Designation of phases: <A*>, solid solutions based on hexagonal modification of La_2O_3 ; , solid solutions based on monoclinic modification of Gd_2O_3 ;

Table S3. Phase composition and lattice parameters of the phases in the La_2O_3 -Gd₂O₃ system, annealed at 1100 °C for 9820 h in air (according to XRD)

Chem	ical sition	Phase composition	se Lattice parameters			s of the phases (nm)			
(mol	%)								
1-0	64.0			<a>*					
Ld2U3	Gu ₂ O ₃		а	С	c/a	а	b	С	β
100	0	<a>*	0.6523	0.3855	0.5909	-	_	-	_
95	5	<a>*	0.6497	0.3835	0.5903	-	-	-	-
90	10	<a>*	0.6492	0.3825	0.5892	-	-	-	-
85	15	<a>*	0.6489	0.3815	0.5879	-	-	-	-
80	20	<a>* + 	0.6494	0.3797	0.5854	-	-	-	-
75	25	<a>* + 	0.6497	0.3788	0.5837	1.4331	0.5119	0.8581	115.57
70	30	<a>* + 	0.6477	0.3781	0.5838	1.6157	0.6423	0.8653	126.97
65	35	<a>* + 	0.6488	0.3808	0.5884	1.6675	0.6784	0.8644	129.37
60	40		-	-	-	1.4704	0.3548	0.9137	88.96
55	45		-	-	-	1.4672	0.3627	0.9076	90.58
45	55		-	-	-	-	-	-	-
40	60		-	-	-	1.4052	0.3651	0.8946	87.18
35	65		-	-	-	1.4077	0.3644	0.8944	87.49
30	70		-	-	-	1.3986	0.3627	0.8892	87.66
25	75		-	-	-	1.3981	0.3619	0.8870	87.72
20	80	 + <c></c>	-	-	-	1.3940	0.3606	0.8844	87.45
15	85	 + <c></c>	-	-	-	1.3919	0.3598	0.8827	87.48
10	90	 + <c></c>	-	-	-	1.3907	0.3591	0.8818	87.38

5	95	 + <c> a = 1.0816</c>	-	-	-	1.4340	0.3430	0.8926	88.82
0	100	<c> a = 1.0777</c>	-	—	-	-	_	-	-

At given conditions (at 1600°C for 10 h in air) the hexagonal modification of $A-La_2O_3$ unquenchable and hexagonal modification of $La(OH)_3$ was observed instead. Designation of phases: < A^* >, solid solutions based on hexagonal modification of La_2O_3 ; , solid solutions based on monoclinic modification of Gd_2O_3 <C>, solid solutions based on cubic modification of Gd_2O_3

Table S4 Phase composition and lattice parameters of CeO₂–La₂O₃–Gd₂O₃ samples annealed at 1500 °C for 130 h (according to XRD and scanning electron microscopy)

Chemical composition,		osition,	Phase composition and lattice	Lattice parame	ter of phases,
	mol%		parameters of the phases a (nm)	nn	n
CeO ₂	La ₂ O ₃	Gd ₂ O ₃	by XRD data	<c></c>	<f></f>
1	2	3	4	5	6
		Sectio	n CeO ₂ – (50 mol % La ₂ O ₃ – 50 mol	% Gd2O3)	
5	47.5	47.5	<f>++<a*></a*></f>	-	0.5516
			<i>(a =</i> 0.6395, <i>c</i> = 0.3744)		
10	45	45	<f>++<a*></a*></f>	_	0.5515
			<i>(a =</i> 0.6444, <i>c</i> = 0.3708)		
15	42.5	42.5	<f>++<a*></a*></f>	-	0.5514
			<i>(a =</i> 0.6437, <i>c</i> = 0.3699)		
20	40	40	<f>++<a*></a*></f>	_	0.5509
			<i>(a =</i> 0.6419, <i>c</i> = 0.3710)		
25	37.5	37.5	<f>++<a*></a*></f>	_	0.5516
30	35	35	<f>++<a*></a*></f>	_	0.5516
35	32.5	32.5	<f>+</f>	-	0.5512
40	30	30	<f>++<c></c></f>	1.1020	0.5510
45	27.5	27.5	<f>++<c></c></f>	1.1019	0.5509
50	25	25	<f>++<c></c></f>	1.1021	0.5510
55	22.5	22.5	<f>+<c></c></f>	1.0998	0.5508
60	20	20	<f>+<c></c></f>	1.0992	0.5504
65	17.5	17.5	<f></f>	-	0.5493
70	15	15	<f></f>	-	0.5483
75	12.5	12.5	<f></f>	-	0.5477
80	10	10	<f></f>	-	0.5466
85	7.5	7.5	<f></f>	-	0.5451
90	5	5	<f></f>	-	0.5439
95	2.5	2.5	<f></f>	-	0.5425
100	0	0	<f></f>	-	0.5409
		Sec	tion La ₂ O ₃ – (50 mol % CeO ₂ – mol %	o Gd2O3)	
50	0	50	<f> + <c></c></f>	1.0836	0.5418
47.5	5	47.5	<f> + <c></c></f>	1.0868	0.5434
45	10	45	<f> + <c></c></f>	1.0888	0.5446
42.5	15	42.5	<f> + <c></c></f>	1.0930	0.5465

40	20	40	<f> + <c> + </c></f>	1.0960	0.5478
35	30	35	<f> + <c> + </c></f>	1.0959	0.5479

Table 4 Continued

1	2	3	4	5	6
32.5	35	32.5	<f> + </f>	_	0.5502
30	40	30	<f> + + <a*></a*></f>	-	0.5526
			<i>(a =</i> 0.6432, <i>c</i> = 0.3769)		
27.5	45	27.5	<f> + + <a*></a*></f>	-	0.5526
			<i>(a =</i> 0.6438, <i>c</i> = 0.3768)		
25	50	25	<f>++<a*></a*></f>	-	0.5531
			<i>(a =</i> 0.6469, <i>c</i> = 0.3759)		
22.5	55	22.5	<f>++<a*></a*></f>	-	0.5528
			<i>(a =</i> 0.6473, <i>c</i> = 0.3784)		
20	60	20	<f>++<a*></a*></f>	-	0.5525
			<i>(a =</i> 0.6499, <i>c</i> = 0.3775)		
17.5	65	17.5	<f>+<a*></a*></f>	-	0.5546
			<i>(a =</i> 0.6493, <i>c</i> = 0.3775)		
12.5	75	12.5	<f>+<a*></a*></f>	-	0.5556
			<i>(a =</i> 0.6493, <i>c</i> = 0.3775)		
10	80	10	<f>+<a*></a*></f>	-	0.5571
			<i>(a =</i> 0.6524 <i>, c</i> = 0.3810 <i>)</i>		
7.5	85	7.5	<f>+<a*></a*></f>	-	0.5579
			<i>(a =</i> 0.6524 <i>, c</i> = 0.3810 <i>)</i>		
5	90	5	<a*></a*>	-	-
			<i>(a =</i> 0.6534 <i>, c</i> = 0.3820 <i>)</i>		
2.5	95	2.5	<a*></a*>	-	_
			<i>(a =</i> 0.6536, <i>c</i> = 0.3822)		
			Iso-concentration line 15 mol $\%$	CeO ₂	
15	10	75	<c>+</c>	1.0865	-
15	15	70	<c>+</c>	1.0891	-
15	20	65	<f>+<c>+</c></f>	1.0915	0.5482
15	25	60	<f>+<c>+</c></f>	1.0918	0.5480
15	30	55	<f>+<c>+</c></f>	1.0912	0.5481
15	35	50	<f>+</f>	-	0.5488
15	40	45	<f>+<a*>+</a*></f>	-	0.5494
15	45	40	<f>+<a*>+</a*></f>	-	0.5498
15	50	35	<f>+<a*>+</a*></f>	-	0.5493
15	55	30	<f>+<a*>+</a*></f>	-	0.5498
			<i>(a =</i> 0.6524, <i>c</i> = 0.3810)		
15	60	25	<f>+<a*>+</a*></f>	-	0.5500
			<i>(a =</i> 0.6456, <i>c</i> = 0.3773)		
15	65	20	<f>+<a*>+</a*></f>	-	0.5496
			<i>(a =</i> 0.6477, <i>c</i> = 0.3781)		

15	70	15	<a*>+<f></f></a*>	_	0.5505
			<i>(a =</i> 0.6477, <i>c</i> = 0.3802)		

Table 4 Continued

1	2	3	4	5	6
15	75	10	<a*>+<f></f></a*>	-	0.5510
			<i>(a =</i> 0.6506, <i>c</i> = 0.3799)		
15	80	5	<a*>+<f></f></a*>	_	0.5516
			<i>(a =</i> 0.6525, <i>c</i> = 0.3799)		
			Iso-concentration line 45 mol %	CeO ₂	
45	5	50	<f> + <c></c></f>	1.0868	0.5434
45	10	45	<f> + <c></c></f>	1.0902	0.5451
45	15	40	<f> + <c></c></f>	1.0938	0.5469
45	25	30	<f>+<c>+</c></f>	1.1159	0.5499
45	30	25	<f>+<c>+</c></f>	1.1057	0.5494
45	35	20	<f>++<a*></a*></f>	-	0.5532
45	40	15	<f>++<a*></a*></f>	-	0.5535
45	45	10	<f> + <a*></a*></f>	-	0.5563

At given conditions (at 1500°C for 130 h in air) the hexagonal modification of A-La₂O₃ unquenchable and hexagonal modification of La(OH)₃ was observed instead. Designation of phases: <A>, solid solutions based on hexagonal modification of La₂O₃; <F>, solid solutions based on cubic modification with fluorite-type structure of CeO₂; <C>, solid solutions based on cubic modification of Gd₂O₃; , solid solutions based on monoclinic modification of Gd₂O₃

Table S5 – Phase composition and lattice parameters of CeO_2 – La_2O_3 – Gd_2O_3 samples annealed at 1250 °C for 6200 h (according to XRD)

Chemical composition, mol%		osition,	Phase composition and lattice parameters of the phases a (nm)	Lattice parameter of phases, nm				
CeO ₂	La ₂ O ₃	Gd ₂ O ₃	by AND data	<c></c>	<f></f>			
1	2	3	4	5	6			
	Section CeO ₂ -(50 mol % La ₂ O ₃ -50 mol % Gd ₂ O ₃)							
5	47.5	47.5	<f>+<a>+</f>	_	0.5545			
10	45	45	<f>+</f>	_	0.5542			
15	42.5	42.5	<f>++<c></c></f>	1.1071	0.5534			
20	40	40	<f>++<c></c></f>	1.1073	0.5536			
25	37.5	37.5	<f>++<c></c></f>	1.1070	0.5538			
30	35	35	<f>++<c></c></f>	1.1066	0.5533			

35	32.5	32.5	<f>++<c></c></f>	1.1074	0.5537			
40	30	30	<f>++<c></c></f>	1.1071	0.5536			
45	27.5	27.5	<f>+<c></c></f>	1.1062	0.5531			
50	25	25	<f>+<c></c></f>	1.1058	0.5527			
55	22.5	22.5	<f>+<c></c></f>	1.1055	0.5516			
60	20	20	<f></f>	-	0.5498			
65	17.5	17.5	<f></f>	-	0.5493			
70	15	15	<f></f>	_	0.5481			
75	12.5	12.5	<f></f>	_	0.5470			
80	10	10	<f></f>	-	0.5450			
85	7.5	7.5	<f></f>	-	0.5446			
90	5	5	<f></f>	_	0.5436			
95	2.5	2.5	<f></f>	_	0.5419			
100	0	0	<f></f>	_	0.5409			
Section La ₂ O ₃ -(50 mol % CeO ₂ -50 mol % Gd ₂ O ₃)								
50	0	50	<f> + <c></c></f>	1.0865	0.5433			
47.5	5	47.5	<f> + <c></c></f>	1.0869	0.5435			
45	10	45	<f> + <c></c></f>	1.0898	0.5449			
42.5	15	42.5	<f> + <c></c></f>	1.0936	0.5467			
40	20	40	<f> + <c></c></f>	1.0999	0.5499			
37.5	25	37.5	<f> + <c> + </c></f>	1.1039	0.5520			

Table 5 Continued

1	2	3	4	5	6
35	30	35	<f> + <c> + </c></f>	1.1040	0.5515
32.5	35	32.5	<f> + <c> + </c></f>	1.1038	0.5522
30	40	30	<f> + <c> + </c></f>	1.1037	0.5518
27.5	45	27.5	<f> + </f>	-	0.5528
25	50	25	<f>++<a*></a*></f>	-	0.5536
			<i>(a =</i> 0.6471 <i>, c</i> = 0.3782 <i>)</i>		
20	60	20	<f>++<a*></a*></f>	-	0.5535
			<i>(a =</i> 0.6473 <i>, c</i> = 0.3784 <i>)</i>		
15	70	15	<f>++<a*></a*></f>	-	0.5537
			<i>(a =</i> 0.6475 <i>, c</i> = 0.3786 <i>)</i>		
10	80	10	<f>++<a*></a*></f>	-	0.5536
			<i>(a =</i> 0.6473 <i>, c</i> = 0.3784 <i>)</i>		
7.5	85	7.5	<f>+<a*></a*></f>	-	0.5542
			<i>(a =</i> 0.6524 <i>, c</i> = 0.3810 <i>)</i>		
5	90	5	<a*><i>(a =</i> 0.6534, <i>c</i> = 0.3820)</a*>	-	-

2.5	95	2.5	<a*> a = 0.6536, c = 0.3822)</a*>	-	-	
Iso-concentration line 15 mol % CeO ₂						
15	0	85	<c></c>	1.0830	-	
15	5	80	<c></c>	1.0838	-	
15	10	75	< C > + < B >	1.0850	-	
15	15	70	< C > + < B >	1.0872	-	
15	20	65	< F >+< C > + < B >	1.0891	0.5520	
15	25	60	< F >+< C > + < B >	1.0892	0.5522	
15	30	55	< F >+< C > + < B >	1.0899	0.5518	
15	35	50	< F >+< C > + < B >	1.0910	0.5521	
15	40	45	< F >+< C > + < B >	1.0898	0.5520	
15	45	40	< F >+ < B >	-	0.5530	
15	50	35	< F >+< B> + < A >	-	0.5535	
			<i>(a =</i> 0.6477 <i>, c</i> = 0.3781 <i>)</i>			
15	60	25	< F >+< B> + < A >	-	0.5537	
			<i>(a =</i> 0.6477, <i>c</i> = 0.3802)			
15	75	10	< F >+< B> + < A >	-	0.5534	
			<i>(a =</i> 0.6479, <i>c</i> = 0.3800)			
15	80	5	< F > + < A >	-	0.5540	
			<i>(a =</i> 0.6523, <i>c</i> = 0.3797)			

At given conditions (at 1250°C for 620 h in air) the hexagonal modification of $A-La_2O_3$ unquenchable and hexagonal modification of $La(OH)_3$ was observed instead. Designation of phases: <A>, solid solutions based on hexagonal modification of La_2O_3 ; <F>, solid solutions based on cubic modification with fluorite-type structure of CeO₂; <C>, solid solutions based on cubic modification of Gd₂O₃; , solid solutions based on monoclinic modification of Gd₂O₃