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Abstract: The emergence of cloud computing and IoT has made effective and secure cryptographic schemes 

essential for sharing data online. To protect sensitive data, data owners must encrypt files before storing them online 

and grant decryption rights to authorized users. A novel approach, the Key Aggregate Cryptosystem (KAC), enables 

users to decode multiple pieces of data types with one single constant key size, enhancing efficiency. In this article 

the Efficient Revocable & Dynamic Secure Aggregate Key Cryptosystem Approach (ERDSAKCA) is tailored for cloud 

environments. This innovative strategy not only simplifies the key management through KAC but also allows for 

dynamic user revocation by updating the ciphertext, ensuring revoked users cannot access new data while non-

revoked users retain access without updating their private keys. The scheme also incorporates a verification 

mechanism to ensure accuracy in user revocation and ciphertext updates. Compared to existing schemes, 

ERDSAKCA effectively manages user access control and user revocation and reduces the costs associated with key 

management and storage. Lastly, the scheme is shown to be selectively chosen plaintext-safe under the conventional 

model, offering strong protection against cryptographic attacks. 

Keywords: Aggregate Key Cryptosystem, Secure Data Sharing, Semantic Security Mechanism, Dynamic Access 

Control Policy, Attribute Based Encryption. 

 

1. Introduction 

Cloud computing has emerged as a 

transformative model that provides flexible, scalable, 

and cost-effective access to shared computing 

resources. Among its core services, cloud storage offers 

virtualized storage infrastructure that reduces 

dependency on local hardware and facilitates seamless 

data access and management across distributed 

environments. With the exponential growth in data, 

organizations and individuals increasingly rely on cloud-

based services to store, retrieve, and share data 

efficiently. Cloud storage allows users to offload massive 

data to remote servers, improving operational agility and 

minimizing infrastructure costs [1, 2]. Additionally, in 

multi-user settings, the ability to share content securely 

and selectively is essential for collaborative applications 

in fields like healthcare, education, and finance. 

However, this convenience introduces critical security 

concerns, especially when data owners relinquish 

control to potentially untrusted cloud service providers 

(CSPs) [3].  

Despite the growing adoption of cloud services, 

access control remains a significant challenge. 

Traditional access mechanisms either rely heavily on 

CSPs or involve complex cryptographic management 

that is impractical at scale. Moreover, ensuring fine-

grained access control, while allowing dynamic changes 

(e.g., revoking users or modifying access policies), is 

particularly difficult in distributed environments, and 

many existing solutions are largely static, requiring 

costly re-encryption and key redistribution that can 

disrupt availability of services for authorized users [4].  

Recent advances in key-aggregate 

cryptosystems and searchable encryption address 

revocation, delegation, and verifiability to varying 

degrees [5–13]. Despite these advancements, key 

challenges remain unaddressed. Many existing models 

lack support for simultaneous revocation, verification, 

and aggregation in a scalable manner, particularly in 

multi-user, multi-file cloud settings. Most schemes 

continue to rely on CSPs for executing revocation and 

ciphertext updates without any guarantee of verifiability 

from the data owner’s side. This introduces trust issues 

mailto:samee2016@gmail.com
https://doi.org/10.54392/irjmt2558
https://crossmark.crossref.org/dialog/?doi=10.54392/irjmt2558&domain=pdf&date_stamp=2025-09-25


Vol 7 Iss 5 Year 2025     Sameera Mahammad & K. Usha Rani /2025 

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 122 

and potential for unauthorized access. Furthermore, 

frequent re-keying and re-encryption in these schemes 

cause significant overhead and limit real-time 

collaboration. These limitations motivate a lightweight, 

verifiable, and scalable revocable KAC scheme that 

ensures secure access control and efficient key 

management without affecting the accessibility of data 

for legitimate, non-revoked users. A structured 

comparison is provided in Section 2 (Table 1) and 

highlights the specific gaps that motivate this work. 

This article proposes the Efficient Revocable & 

Dynamic Secure Aggregate Key Cryptosystem 

Approach (ERDSAKCA) with the following contributions: 

 Efficient Key Management: Using KAC to 

aggregate multiple private keys into a single, 

constant-sized key. 

 Dynamic User Revocation: Supports revocation 

by updating ciphertext, ensuring revoked users 

cannot access new data without requiring non-

revoked users to update keys. 

 Verification Mechanism: Includes a verification 

algorithm to confirm accurate revocation and 

ciphertext updates. 

 Security Proof: Proven semantically secure 

under the Generalized Decisional Hybrid Diffie-

Hellman Exponent (DHDHE) assumption. 

 Performance Evaluation: Evaluates the 

performance of the proposed scheme with the 

existing schemes. The analysis shows that our 

scheme reduces computational and storage 

costs compared to existing schemes. 

The subsequent sections of the article are 

structured as follows. Section 2 presents the tabular 

literature review. Section 3 outlines the materials and 

methods, including the system model, cryptographic 

background, and construction of the proposed 

ERDSAKCA scheme. Section 4 presents the 

experimental results, evaluating key performance 

metrics such as setup time, encryption/decryption 

efficiency, revocation performance, and memory usage. 

Section 5 provides a detailed discussion, comparing 

ERDSAKCA with existing schemes and highlighting its 

advantages. Finally, Section 6 concludes the study and 

suggests potential directions for future work. Author 

declarations, Data Availability and References are 

provided at the end of the manuscript. 

 

2. Literature Review 

To situate ERDSAKCA within current research, 

Table 1 summarizes closely related KAC/KASE and 

revocation oriented schemes relevant to multi-user, 

multi-file cloud data sharing. 

 

3. Materials and Methods 

This section describes the foundational 

concepts and cryptographic mechanisms employed in 

the development of the proposed ERDSAKCA scheme. 

The materials include the mathematical assumptions, 

group structures, and cryptographic primitives used to 

construct the key-aggregate framework. The methods 

outline the setup of the system, key generation, 

encryption and decryption processes, user revocation 

strategy, and the integrated verification mechanism. 

These components collectively enable secure, scalable, 

and flexible data sharing in a multi-user cloud 

environment. 

 

3.1 Basic Preliminaries 

This section, introduces the foundational 

concepts and definitions related to KAC and its semantic 

security, along with complexity assumption called the 

Generalized Decisional n-Hybrid Diffie-Hellman 

Exponent (Generalized DHDHE). 

 

3.1.1 Key Aggregate Cryptosystem (KAC) 

The KAC, a cryptographic framework for secure 

data sharing with fine-grained access control comprises 

the following six randomized algorithms [14]: 

1. The Setup function initializes the system with 

public parameters PK and a secret parameter t, 

which is only accessible to authorized data 

owners. 

2. The Keygen function outputs the public and 

master-secret key pair (PK = N̂p, msk = N̂). 

3. The Encrypt function takes three parameters: a 

public key PK, a ciphertext class i, and a 

message m. It returns the class i ciphertext C 

corresponding to message m. 

4. The UserRevoc function manages user access 

by taking msk and a subset of ciphertext classes 

S, computing access control parameters and an 

aggregate key KS. 

5. The Access Control and Key Distribution 

delivers the aggregate key KS and access 

control parameter U to users with appropriate 

access rights through a secure channel. 

6. The Decryption function decrypts the ciphertext 

C for specific class i using aggregate key KS and 

access control parameter U, and produces the 

decrypted message m. 

 

3.1.2 Keeping KAC Secure Semantically 

The semantic security of a key-aggregate 

encoding system in opposition to an adversary is defined 

through the interaction between the attack algorithm A 

and the challenger algorithm B. 



Vol 7 Iss 5 Year 2025     Sameera Mahammad & K. Usha Rani /2025 

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 123 

 

Table 1. Summary of related work 

Ref Core idea Revocation 
Aggregation / 

Key Size 
Verification 

Scope 

 

Gaps Addressed by 

ERDSAKCA 

[5] 

Blockchain-based 

revocable KASE for 

group sharing (IIoT) 

Yes 

(non-interactive) 

Aggregate 

search keys (not 

general KAC) 

Blockchain-

assisted 

verification 

Search 

Search-only focus, 
blockchain complexity/ 
latency; R 
DSAKCA targets file 

sharing with lightweight 

verification 

[6] 

KAC with user 

revocation for 

selective groups 

Yes 

(ciphertext 

updates) 

Constant-size 

ciphertexts 

No explicit 

CSP-update 

check 

Files 

Updates may affect 

non‑revoked users; 

ERDSAKCA confines 

impact and adds verifiability 

[7] 

Key-aggregate 

proxy re-encryption 

(KAPRE) 

Yes (via re-

encryption) 

Aggregation via 

PRE 

Not 

emphasized 
Files 

Re-encryption cost on 

revocation; 

ERDSAKCA avoids per-

revocation re-encryption 

burden 

[8] 

Verifiable data 

sharing in dynamic 

multi-owner 

Not core focus 
Not 

key‑aggregate 

Yes (verifiable 

sharing) 
Files 

No lightweight aggregation; 

ERDSAKCA integrates 

aggregation and verification 

[9] Multi-owner KASE 
Partial 

(search‑oriented) 

Search-key 

aggregation 
Not primary Search 

Search-only; ERDSAKCA 

supports general file 

sharing and dynamic 

revocation 

[10] 

Revocable 

online/offline KASE 

(reduced online 

cost) 

Yes  

(search context) 

Search-key 

aggregation 
Not primary Search 

Search‑specific; 

ERDSAKCA generalizes to 

files and adds 

ciphertext‑update 

verification 

[11] 

KAASE (Authorized 

searchable 

encryption with 

multi-key) 

Yes 

(search context) 

Aggregate/ 

authorized 

search keys 

Not primary Search 

Preprint and search‑centric; 

ERDSAKCA covers 

multi‑file access and 

verification 

[12] 

Key‑aggregate 

authentication 

cryptosystem 

Not core 
Aggregate 

authentication 

No 

CSP‑update 

check 

Files 

No verifiable revocation 

updates; 

ERDSAKCA includes 

verification 

[13] 

Identity Based 

conditional PRE 

with ciphertext 

evolution 

Yes 

(Via evolution) 

Delegation 

focused 
Not primary Files 

Key-management 

complexity; 

ERDSAKCA keeps 

constant-size aggregates 

with simple updates 

[14] 

KAC‑based access 

control for flexible 

sharing 

Not native; 

achievable with 

KAC variants. 

Constant‑size 

aggregates 
Not primary Files 

No built‑in verification; 

ERDSAKCA integrates 

verification and dynamic 

updates 

[15] 
KASE foundations & 

implementation 

Search-token 

revocation only  

(not general file 

access) 

Search-key 

aggregation 

Proofs for 

search result 

correctness; 

not CSP 

update 

checks. 

Search 

Limited to search; 

ERDSAKCA targets 

general file ciphertexts 

[18] 
Efficient verifiable 

KASE 

Revocable  

(search) 

Search-key 

aggregation 

Yes  

(for search) 
Search 

Verification tied to search; 

ERDSAKCA verifies file 

ciphertext updates 

[19] 
KASE under 

multi‑owner setting 

Partial  

(search) 

Search-key 

aggregation 
Not primary Search 

Multi‑owner search; 

ERDSAKCA supports 

multi‑owner/multi‑file and 

CSP‑side checks 

[20] 

BTG-RKASE with 

fine-grained multi-

delegation "break-

the-glass" 

Yes  

(search) 

Search-key 

aggregation 
Not primary Search 

Emergency‑only niche; 

ERDSAKCA generalizes 

revocation beyond 

emergencies 
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The game advances through the following levels 

[15]: 

1. The adversary A starts by choosing a subset of 

the ciphertext classes S ⊆ {1, 2, ..., n} that it 

intends to attack. This set is fixed before seeing 

any public parameters, aligning with a selective 

security model. 

2. The challenger B, in response, initiates the 

Setup-i algorithm for each i ∈ S, which involves 

generating the public parameters and public key 

PKᵢ, along with access control parameter U. 

These values are revealed to the adversary, 

while the corresponding msk remains 

confidential. 

3. For each i ∈ S, the challenger also generates 

and provides the adversary with the aggregate 

decryption key K_S for all ciphertext classes not 

in S, ensuring the adversary has legitimate 

access to non-targeted classes. 

4. In the Challenge-i phase, the challenger 

encrypts one of two challenge messages 

chosen by the adversary for each class i ∈ S, 

and the adversary must guess which message 

was encrypted. 

In this security game, the adversary A begins by 

selecting a subset S ⊆ {1, 2, ..., n} of ciphertext classes 

it intends to attack. This choice is made before A 

observes any system parameters or public keys, 

ensuring a selective security model. The challenger B 

then executes the Setup algorithm to generate the 

system parameters, public key PK, and access control 

parameter U, which are provided to A. Additionally, B 

generates and gives A the aggregate decryption key Ks 

for all ciphertext classes not in S, granting legitimate 

access to those. For each i ∈ S, B encrypts a randomly 

chosen message based on a challenge bit, and A 

attempts to guess the bit. The adversary succeeds only 

if it correctly distinguishes all challenge ciphertexts in S. 

The scheme is semantically secure if this advantage is 

negligible over random guessing. 

In our proposed approach, Generalized DHDHE 

[16] assumption is used to prove security because it 

better aligns with the needs of dynamic cloud 

environments. The original DHDHE assumption is 

designed for static settings with limited ciphertext-user 

mappings, making it less suitable for systems with 

frequent changes in user access and data classes. In 

contrast, the generalized DHDHE supports polynomial-

size user and ciphertext class selections, making it more 

appropriate for dynamic, multi-user data sharing 

scenarios like ours. It captures the hardness of 

distinguishing challenge ciphertexts under complex and 

evolving key distributions, thereby enabling our 

ERDSAKCA scheme to achieve secure and scalable 

user revocation and access control. This broader 

assumption provides stronger semantic security 

guarantees against adaptive adversaries and ensures a 

robust security foundation as the system scales in 

complexity. 

The first assumption is based on the 

Generalised DHDHE, where during the setup phase, let 

the parameters be 2n. Set aℓ = (2n+1) · eℓ for ℓ = 0, 1, ..., 

n−1, and set aₙ = gα(2n+1) eₙ for ℓ = n, using α ∈ ℤₚ as a 

random variable. Choose b₁ from ℤₚ and t₂ from ℤₚ at 

random, with b = b₁ + t₂, and set a₁ = bt₁n and a₂ = bt₂n. 

Identifying K = (2n)²ⁿ from a random element in G2n is the 

objective, given ⟨∀i ∈ {0, 1, ..., n}, Y₁, Y₂, K⟩. For the 

generalized DHDHE problem, the advantages of a 

polynomial-time adversary A are described as: 

AdvA
DHDHE = |Pr [A ({Xi }i∈{0,1….,n},    Y1 , Y2  K =   g 2n

at2n

) = 1] −

Pr[A({Xi }i∈{0,1….,n},    Y1 , Y2  K =   g2𝑛
𝑟 )  = 1]|   (1) 

The above equation 1 describes the dynamic 

key generation for multi-users with polynomial user 

selection. This new assumption is clearly an extension 

of the DHDHE assumption, as can be seen from this. 

The specific reduction of the generalized DHDHE 

assumption to the DHDHE assumption can be achieved 

by multiplying a1 and Y2. 

 

3.1.3 Notation Summary 

To improve clarity and support understanding of 

the equations in the paper, Table 2 summarizes the key 

symbols and terms used throughout the mathematical 

formulations. 

Table 2. Summary of Symbols and Notations 

Symbol Description 

P, Q Generators of bilinear groups G₁, G₂ 

respectively. 

G₁, G₂, 

GT 

Cyclic groups of prime order p; GT is the 

pairing result group. 

e(·,·) Bilinear pairing function e : G₁ × G₂ → GT. 

α, t, r Random scalars from ℤₚ. 

A, Â Number of logical data/user blocks. 

B Block size for data classes and users. 

n = A × B Total number of data classes. 

m = Â × B Total number of users. 

PK, msk Public key and master secret key. 

Bsk Broadcast secret key. 

PKa
i  Public key components for attributes. 

γₐ¹, γₐ² Secret exponents 

Cᵢ Ciphertext tuple (C₀, C₁, C₂, C₃). 

S, S* Sets of data classes and authorized user 

indices. 

Ks Aggregate key for data class subset S. 

K(S, S*) Broadcast key for users S̄. 

dᵢʳ User's private key. 

aSa, bSa Summations used in key derivation. 

Xᵢ, Y₁, Y₂ Public values in the DHDHE game. 

AdvA
DHDHE Adversary’s advantage in distinguishing 

ciphertexts. 
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3.2 Process of Dynamic & Revocable 

Collaborative Key Sharing 

This section describes an approach to dynamic 

key aggregate storage presuming n ciphertext classes 

with multiuser data sharing. While the size of the public 

parameters grows linearly with the number of ciphertext 

classes, our scheme guarantees that the ciphertext and 

aggregate key remain constant in size. Users’ access 

rights can be dynamically revoked using the suggested 

scheme, all without requiring extensive changes to the 

system parameters. Along with the proposal, a security 

proof of concept is also offered. The use of the user 

revocation mechanism in KAC requires revocable key-

aggregate encryption, as outsourced users in the cloud 

exhibit the characteristic of perpetual change. 

When a user’s credentials expire, they can have 

their access revoked using the Aggregate Dynamic & 

Revocable Key Cryptosystem (ADRKC), an 

improvement on key aggregate cryptosystems. Setup, 

KeyGen, Encrypt, UserRevoc, Update, Decrypt, and 

Verify are the seven polynomial-time algorithms that 

make up the dynamic and revocable key-aggregate 

encryption scheme [16, 17]. Their definitions are as 

follows: 

1. The first input to the Setup algorithm is the 

maximum quantity of files n and the protection 

factor 1λ. It returns Params, the public 

parameter. 

2. A Public Key (PK) and a master secret key (msk) 

are produced by a key generation algorithm by 

taking Params as input. 

3. Take the PK, an index i representing the file, a 

message m, and the Params as inputs to the 

encryption algorithm. It generates a ciphertext 

C. 

4. The UserRevoc algorithm accepts the msk, a set 

S of indices that correspond to various files, the 

user’s identity uid, and the Params as input. 

Users’ private key SK is outputted. 

5. The update algorithm accepts the following 

parameters: a ciphertext C, a user revocation 

set R, and the Params. The result is a modified 

ciphertext a. 

6. The following parameters are passed to the 

decryption algorithm: the cipher text C, the user 

private key SK, the set S, an index i representing 

the cipher text C, the user revocation set R, and 

the Params. Either the result u of 1 is output if (i 

∈ S) ∧ (uid /∈ R). 

7. The Verify algorithm accepts a cipher text C, an 

updated cipher text a, a PK, and Params as the 

input. If the revocation has been executed 

honestly and the cipher text has been updated 

correctly, the cloud server will output 1. 

Otherwise, it will output 0. 

Figure 1 depicts the model developed for use 

with the ADRKC in a cloud setting. There are three parts 

to it: the user, the owner, and the cloud service provider. 

In order to obtain the system parameters, data 

owner Alice runs the setup algorithm. Then, using a 

revocable key aggregate encryption system, several 

files u1, u2, .. can be shared with other people over the 

cloud server. 

After that, Alice secretly stored msk and used 

KeyGen (params) to generate a random public/master 

secret key-pair (PK, msk). 

Afterward, by running Encrypt (PK, i, R, m, 

params) on the cloud server, Alice and anyone else who 

helped Alice can upload the encrypted files. Once Alice 

decides to share multiple files with Bob, Alice will run the 

UserRevoc algorithm (msk, uid, S, params) to generate 

SK for Bob based on the indices of authorized files and 

the user’s identity. Due to the fixed size of SK, Alice can 

easily send it to Bob through a secure channel at a low 

communication cost. The user revocation list R will be 

sent to CSP by Alice whenever she wishes to remove 

users. In order to update the corresponding ciphertext, 

CSP then invokes the algorithm Update (PK, R, a, and 

params). Bob’s revoked access must not be disabled 

before downloading the new ciphertext from the cloud 

server and using the private key to run the Decrypt 

algorithm (O, SK, T, i, R, params) to extract the actual 

text. If the user’s access has been cancelled, like David’s 

in Figure 1, he will lose access to the files because he 

cannot decipher the updated ciphertext. At last, by using 

the algorithm Verify (a, O, params), Alice can confirm 

that the user revocation is successfully completed and 

check the changed ciphertext. Such verifiability in 

outsourced settings is similarly emphasized in [18], 

though the model lacks integration with dynamic 

ciphertext updates. 

Dynamic access control: The ability to 

dynamically update user access to a set of ciphertexts is 

a key component of the proposed scheme. To remove a 

user’s access to a set of ciphertext classes after they 

have been granted an aggregate key by the data owner 

in KAC, the owner must first change the master secret 

key. However, it is expensive and perhaps problematic 

to change the msk each time a user’s ciphertext class 

access rights need to be updated. Our plan, however, 

addresses this issue through enabling the owner of data 

to instantly modify permissions of user.  

To accomplish this, in the proposed scheme, the 

parameter U = tP is not included in the ciphertext but 

rather in the aggregate key. Any encrypted ciphertext 

class in subset S can be decrypted by the user if they 

have the correct value of U. Imagine for a moment that 

the data owner wants to change who can access subset 

S.  
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Figure 1. General Processes of Dynamic and Revocable Multi Data Sharing with Aggregate Key Cryptosystem. 

She has the option to reencrypt all the 

ciphertexts in that class with a new random element t′ ∈ 

Zq. Then, she can only grant access to the users she 

wants by providing them with the updated dynamic 

access parameter U′ = t′P. If you use the same t for 

encryption and decryption, the decoded value only will 

provide the exact information m. In contrast, some earlier 

techniques could not control access privileges 

effectively, as they relied solely on the random 

parameter embedded in the ciphertext. This represents 

a significant difference from the proposed method. 

Moreover, the parameter U remains constant in size and 

is transmitted only when updated, ensuring that system 

performance remains largely unaffected.  

 

3.3 Construction of Efficient Revocable & 

Dynamic Secure Aggregate Key Cryptosystem 

Approach (ERDSAKCA) 

This section describes the construction of the 

proposed Efficient, Revocable, and Dynamic Secure 

Aggregate Key-based Cryptosystem for Access control 

(ERDSAKCA) encryption scheme, designed for secure, 

efficient, and revocable multiuser file sharing in cloud 

environments. The scheme outlines the implemented 

processes, security level performance, multiuser 

revocation, and dynamic access control in data sharing. 

 

3.3.1 Process 

The implemented process as follows: 

1) Setup of Cloud Environment: Pick α ∈ Zq at random 

using SetUpB (1λ, n, m). The system parameter 

should be output shown in Algorithm 1 as The 

parameters are set to include the following: P, Q, Y 

P, α, B, Y Q, α,BC. Throw out α. Find A as ⌊n/B⌋ and 

A′ as ⌊m/B⌋. 

Algorithm 1 Algorithm process of cloud setup 
environment 

1) Create a bilinear map group system B = 

2) (p, G, GT, e (・, ・)). 

3) Create a set of public parameters called PubK 

with the following definition: g = gol ∈ G for every 

l ∈ {1, 2, . . . , n, n + 2, . . . , 2n}. 

4) Choose a collision-resistant hash function H1: 

{0, 1} × {0, 1} → {0, 1}∗∗ that is one-way. 

5) H2: {0, 1} × {0, 1}∗∗   → is a collision-resistant 
hash function that must be monotone minimum, 
and set SP ← 

6) (B, PubK, H1, H2). 

7) KS ← γ {0, 1} | Γ = 0. 

 

2) Gen of User Key: Probably select the attributes: γ1, . 

. . , γA ∈ Zq, & γ1′ , . . . , γA′ ∈ Zq. msk1 = (γ1, . . . , 

γA) & msk2 = (γ1′ , . . . , γA′ ). After that, specify for 1 

≤ a ≤ A and 1 ≤ a′ ≤ A, as shown in equation 2 & 3. 

𝑃𝐾1
𝑎 =  𝛾1

𝑎𝑃. 𝑃𝐾2
𝑎 =  𝛾1

𝑎𝑄  

         𝑃𝐾3
𝑎 =  𝛾2

𝑎𝑃. 𝑃𝐾4
𝑎 =  𝛾2

𝑎𝑄                    (2) 

𝑃𝐾1 =  (𝑃𝐾1
1, … , 𝑃𝐾1

𝐴)  

𝑃𝐾2 =  (𝑃𝐾2
1, … , 𝑃𝐾2

𝐴)  

𝑃𝐾3 =  (𝑃𝐾3
1, … , 𝑃𝐾3

𝐴)       (3) 

As msk = (msk1, msk2), print the master secret 

key, and as PK = (PK1, PK2, PK3, PK4), print the public 

key. Uniformly at random choose the secret broadcast 

key bsk = γ3 from Zq and provide it as additional output. 
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3) Encrypt of Owner Data: Parameterized function t 

(PK, i, M): find a = ⌊i/B⌋ and b is calculated as (i mod 

B) + 1. Consider a-th element of PK2 as PKa2. 

Algorithm 2 Encryption of Files for Secure Data 
Sharing in the Cloud 

1) Choose a value t from the set Zp. 
2) If the value l is from the set {1, 2, . . . , }, then 

3) C11 ← gt. 

4) C12 ← (v. g) the fifth time: δl = (C11, C12). 

5) C1KW1 ← ϕwi, jϵ ← for all integers from 1 to x in 

6. 

6) For every i and j in the set ←  KW, do the 

following: 

7) C1KWi ← H2(wi, j) ・ e (gl, gn). Eleventh: Cl ← 

The equation KW = C13 ← (C1KW1, {C1KWi}) 

where i ∈ {x + 1, x + 2, . . . , y} and wi, j ∈← KW 

8) e ← KW 

9) C1 = (C11, C12, C13, C14) 
10) The owner of the data keeps the ciphertext C1 

on the server in the cloud. 

 

Select an element t from the set Zq at random 

and print out the partial cipher text C0 as shown in 

equation 4. 

𝐶 =  (𝐶0, 𝐶1, 𝐶2, 𝐶3) =  (𝑡𝑄, 𝑡𝑃𝐾2
𝑎, 𝑡(𝑃𝐾2

𝑎 +  𝑄), 𝑀 ⋅

𝑒(𝑃𝑏 , 𝑡𝑄))          (4) 

Conversion of cipher text from random user 

attributes using the above equation. 

Enter the partially encrypted cipher text C0 = (c0, 

c1, c2, c3), the msk = (msk1, msk2), and the bsk as 

arguments to the System Encrypt function shown in 

algorithm 2. 

Here, the class id  i is the extra piece of data that 

is needed.  

With a = ⌊i/B⌋, we can denote the a-th 

component of msk1 as msk1a. 

Show the decipher text C′ in its final form as 

specified in equation 5. 

𝐶′  =  (𝐶0
′ , 𝐶1

′, 𝐶2
′ , 𝐶3

′) 

=  (𝑐0, 𝑐1
′ − (𝑏𝑠𝑘 ⋅ 𝑚𝑠𝑘1𝑎)𝑄, 𝑐2, 𝑐3)  

=  (𝑡𝑄, (𝑡 −  𝑏𝑠𝑘)𝑃𝐾2
𝑎, 𝑡(𝑃𝐾2

𝑎 +  𝑄𝑏), 𝑀. 𝑒(𝑃𝑏  , 𝑡𝑄1 ))    (5) 

This is formation of decrypted text with cipher 

text from equation 4. 

 

4) Password Generator (param, msk, ˆi): The user’s 

private key, denoted as d′, should be displayed as 

shown in equation 6. 

𝑑𝑖
′ = 𝑚𝑠𝑘2𝑏′

𝑎′
  𝑃 = 𝛾2𝑏′

𝑎′
      (6) 

This is the same setting d′ to a′BPKA 3 in an indirect 

way. 

5) User Revoc of Key (param, msk, S): Suppose msk 

is equal to (msk1, . . . , mskA). The set Sa is defined 

as {i mod B + 1|i ∈ S, di/Be = a} for the part of indices 

of the class S where 1 ≤ a ≤ A. 

Next, calculate for all values of a from 1 to A, 

evaluate the values from revocable keys for users as 

shown in equation 7. 

𝐾𝑆
𝑎 =   𝑚𝑠𝑘1

𝑎 ∑ 𝑃𝐵+1−𝑗𝑗∈𝑆𝑎
=  𝛾1

𝑎  ∑ 𝑃𝐵+1−𝑗𝑗∈𝑆𝑎
   (7) 

Output of the final attributes sequences as 

follows: 

𝐾𝑆 =  (𝐾𝑆
1, … , 𝐾𝑆

𝐴)   (8) 

6) Multi-User Broadcast Secure Data Share (param, 

KS, S∗, PK, bsk): The following is a broadcast to all 

users in S∗ of the aggregate key KS = (K1 S, 

.….KAS). Define S∗ as the set of user ids where 1 ≤ 

a∗ ≤ A∗ and for each i in S∗. define a∗ as the product 

of {i mod B + 1|i ∈ S, di/Be = a}. 

Pick t∗ at random from the set Gq and set it for 

1 ≤ a∗ ≤A∗. 

𝑏𝑠𝑎
=   ∑ 𝑄𝐵+1−𝑗𝑗∈𝑆𝑎

    (9) 

Based on the above sequences (equation 9), 

generated output collaborative key as shown in 

equations 10 & 11. 

𝐾(𝑆 ,𝑆∗ ) =  (𝑡𝑄, 𝐾1, 𝐾2)    (10) 

Here 

𝐾1 =  ( 𝑡(𝑃𝐾1
4 + 𝑏𝑆1

), … , 𝑡(𝑃𝐾1
4 + 𝑏𝑆𝐴

))  

𝐾2 =  ( { 𝑒(𝑃𝐵 , 𝑡𝑄1) ⋅ 𝑒(𝐾𝑠
𝑎, 𝑄)𝑏𝑠𝑘}1 ≤𝑎 ≤𝐴)       (11) 

Note that K (S, S∗) now comprises of O (A + A∗) 

group elements.  

Algorithm 3. Decryption of Files for Secure Data 
Sharing in the Cloud 

1) If i is a member of the set S, then do the following: 

2) If pub ∈ S is true, then 

3) ŷ ← Sig [1 ∥ i] [eSig′]. 

4) R1 ← e(Tr1 ・ pub−1, C1)/e(pub−2, C2). 

5) e(C1KWI, Tr2) with i × x + y and y′. 
6) Hii ← C1KWI [e(C4, Tr2)e(pub−2, C12)e(pub−4, 

C11)] where Tr0, pub−1, and pub−3 are the inputs 
and C1 is the output. 

7) The set pub i ∈ Sig [n + 1 − j] is defined as ŷ ∈ S, 
where j = lg [n + 1 − j]. 

8) Ri ← 1 if (Hi > Tri1) and (Hi < Tri2). 
9) Include Hii in the Hash Value List (HVL): 
10) Ri ← 0 “Ri equals zero.” 
11) For every i in the set f × 1 × 2…. y′, execute the 

following: 
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12) If RiA = 1, then add i to the Search Result List 
(SRL). 

13) The return failure case. 

 

7) Decrypt of Keys: The function t (Param, C, K(S, S′), 

i′, di′, S, S′) is defined as follows: The output will be 

zero if either i′ is an element of S or i′ is an element 

of S′. If not, then multiply di′/Be by i′ mod B + 1 in 

algorithm 3, and then set: 

𝑎𝑆𝑎 =  ∑ 𝑃𝑏+1−𝑗+𝑏𝑗∈𝑆𝑎 \𝛾𝑏  ,        (12) 

𝑏𝑆𝑎 =  ∑ 𝑃𝑏+1−𝑗𝑗∈𝑆𝑎  ,         (13) 

The set C can be defined as (c0, c1, c2, c3) and 

𝐾{(𝑆,𝑆′)} =  ( 𝑘{0}, ( 𝑘{1}, … , 𝑘{4}), ( 𝑘{1}, … , 𝑘{4})
{2}

)      (14) 

Back to the decrypted message as follows: 

𝑀 =  𝐶3𝐾2.
𝑒(𝑏𝑆𝑎  𝑐1 ) 𝑒 (𝑎𝑆𝑎  𝑐0   )

𝑒(𝑏𝑆𝑎  𝑐2 )
  .

𝑒 ( 𝑑𝑖 + 𝑎𝑆𝑎  𝑘0 )

𝑒(𝑃𝑏+1𝑘1)
      (15) 

The framework mentioned earlier is designed for 

use by a sole owner of the data. To accommodate m0 

owners of data, m0 such setups must be initiated similar 

to the multi-owner KASE approach described in [19]. 

Proof of validity for this construction can be skipped, as 

it mirrors the construction of fundamental KAC. 

The following theorem addresses the non-

adaptive CPA security of the generalized extended KAC 

construction. Let G1 and G2 be two subgroups of order q 

of a bilinear elliptic curve. The broadened and enhanced 

KAC, which handles n data classes and m users, is (τ, 

B)-CPA secure if the non-symmetric decision (τ, B, B)-

BDHE assumption holds in (G1, G2) for any positive 

integer triple (n, m, B) where B ≤ min (n, m). 

Additionally, the extended KAC construction can 

be further developed to achieve Chosen Ciphertext 

Attack (CCA) security using appropriate techniques. 

 

3.3.2 Security Level Performance 

An essential part of the system’s performance is 

the selection of A, A0, and B. The construction makes it 

very evident that there is a constant number of group 

elements that make up the ciphertext. There are O(B) 

group elements in the public parameter and O(A + A′) in 

the public key PK and the broadcast aggregate key K(S, 

S′). So, for uses that necessitate minimal overhead 

aggregate keys, a smaller value of B is beneficial. The 

ordering notation for the storage complexities of 

generalized methods is summarized in Table 3. The 

space complexity of any group member in G1, G2, and 

GT is assumed to be O(n1), O(n2), and O(nT), 

respectively. 

 

 

Table 3. Complexity of Space with Processing of 
Key Aggregate 

Parameter Complexity of the Sequence 

Param O(B(n1 + n2 )) 

msk O(A + A1log q) 

PK O(An1+An2) 

bsk O(log q) 

c O(n1+n2) 

K(S,S′) O((A+1)n2+An1) 

 

3.3.3 Multi User Revocation & Dynamic Access in 

Data Sharing 

The foundation of our structure is a component 

that allows B data classes and users to function. This 

allows the system to manage n = A×B data classes and 

m = Â×B data users. The system is designed to plan and 

execute A × Â instances of this component 

simultaneously.  

Although each building block uses its own 

private and public key components, they all share the 

same set of public parameters. The construction 

maintains constant ciphertext overhead while balancing 

the size of the public parameters with the aggregate key 

and public key sizes. 

Adding and removing users from an existing list 

is especially important in multi-user contexts, where both 

the total number of users and their individual 

permissions to access resources are subject to ongoing 

change [20], including emergency access scenarios 

using break-the-glass delegation. The extended KAC 

construction seamlessly handles the addition of new 

users as shown in the Figure 2. To add a new user, 

simply generate an updated key for each newly joined 

user. From that point onward, all broadcast operations of 

the aggregate key will account for the access rights of 

both recent and existing users. 

Notably, the system does not need to recreate a 

basic size-B block in the enlarged framework to 

accommodate new users. Adding new users only 

increases the value of parameter A, which is equivalent 

to creating additional instances of the same basic 

building block. Consequently, there is no need to modify 

the existing owner/user keys or the public parameters. 

This compatibility with broadcast encryption ensures the 

system can handle an increased number of users 

without complications. 
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Figure 2. Extended KAC with User Management, Revocation and Traitor Tracing Features 

User revocation, a fundamental feature of 

broadcast encryption systems, is also achieved at no 

additional cost. For instance, if a data owner decides that 

a specific user should no longer access any documents 

uploaded to the cloud, they can instruct the system to 

exclude that user’s identity from future broadcast 

operations. This effectively prevents the revoked user 

from accessing aggregate keys associated with any new 

data the owner uploads to the cloud. The corresponding 

security guarantee comes naturally from the collision 

resistance property of the extended KAC construction, 

which is not incurable at all. Specifically, the collusion 

resistance property ensures that a revoked user’s prior 

knowledge of aggregate Keys do not compromise 

access to future documents, as their access rights do not 

cover the new indexes. 

While revoked users naturally retain access to 

previously existing documents (which they could have 

downloaded and saved prior to revocation), revoking 

access to such documents is often unnecessary. 

However, if the data owner wishes to update an existing 

document and prevent a revoked user from accessing it, 

they can assign a different index to the updated 

document.  

Revocation is commonly employed when rogue 

or compromised users threaten the system’s security. 

Tracing such users, however, is more complex and 

requires traitor-tracing systems. Consider a scenario as 

shown in Figure 2 in which the data owner shares an 

aggregate key for a specific subset S of plaintext data 

with a group of authorized users Ŝ. A potential threat 

arises if a malicious actor compromises one of the users 

in the receiver set Ŝ, obtains their secret key, and 

develops a decoder that unauthorized parties can use to 

access the plaintext. 

To address this, the data owner can employ a 

tracing technique that uses a publicly available malicious 

decryptor to identify at least one compromised user 

index and revoke their access. A traitor-tracing system 

is valuable in this context. Although this study does not 

aim to provide a comprehensive description of the 

integration of the extended KAC framework with a traitor 

tracking scheme, it should be noted that the extended 

KAC framework could potentially leverage several 

proposals from the literature that have explored 

integrating traitor tracking with broadcast encryption, 

with varying degrees of success. 

 

4. Results 

The performance of the proposed ERDSAKCA 

scheme is evaluated against two closely related and 

widely cited schemes, Key-Aggregation Authorized 

Searchable Encryption Scheme (KAASE) [11] and Multi-

Owner Key-Aggregate Searchable Encryption Scheme 

(MOKASE) [19], which represent the state-of-the-art in 

key-aggregate searchable encryption with revocation 

and multi-user capabilities. The evaluation focuses on 

key metrics, including setup time, key generation, 

encryption, decryption, user revocation, trapdoor 

generation, and memory utilization, as illustrated in 

Figures 3 through 8.  
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Figure 3. Performance evaluation of cloud setup environment 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Key generation time based on different file attributes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Encryption time to explore files to cloud 
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Figure 6. Performance of data extraction / decrypted data with different files attributes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Performance of proposed approach in term of user revocation 

For the cloud environment setup, the 

implementation was carried out using the latest version 

of CloudSim, with Java and NetBeans as the 

development tools. Experiments were conducted with 

document counts ranging from 10 to 100 in increments 

of 10, each document limited to 10 KB and containing 

randomly selected words from a dictionary. 

Cloud Setup Environment: Figure 3 shows the 

cloud setup time for ERDSAKCA, MOKASE, and 

KAASE as the number of documents increases. 

ERDSAKCA consistently exhibits the lowest setup time, 

ranging from approximately 3 ms to 6 ms, compared to 

MOKASE (4 ms to 9 ms) and KAASE (4 ms to 9 ms). 

The setup time for ERDSAKCA grows linearly with the 

number of documents but remains significantly lower, 

demonstrating its efficiency in initializing the cloud 

environment. 

Key Generation Based on Different Attributes: 

As depicted in Figure 4, the key generation time for 

ERDSAKCA remains nearly constant, fluctuating 

between 10 ms and 14 ms across varying document 

counts. In contrast, MOKASE and KAASE show slightly 

higher times, ranging from 14 ms to 20 ms and 18 ms to 

25 ms, respectively.  This near-constant performance of 

ERDSAKCA highlights its scalability in generating keys, 

even as the number of attributes increases.  

Encryption Time to Explore Files in the Cloud: 

Figure 5 illustrates the encryption time for ERDSAKCA, 

MOKASE, and KAASE.  
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Figure 8. Performance of data size memory utilization for processing secure data in cloud 

 

Table 4. Comparative Summary of ERDSAKCA with MOKASE and KAASE 

Feature MOKASE KAASE ERDSAKCA (Proposed) 

Key Management 
Single key per 

owner 

Attribute-based, fixed-

size 

Constant-size key; aggregate 

key broadcast 

Dynamic User Revocation 
Limited, no 

ciphertext update 

Moderate, requires 

partial updates 

Efficient, revokes via ciphertext 

update 

Verification Mechanism Not integrated Basic hash-based 
Integrated ciphertext update 

verification 

Ciphertext Size Variable Constant Constant 

Trapdoor Generation Supported Supported Supported 

Semantic Security BDHE-based 
ABE with trapdoor 

protection 
Generalized DHDHE-based 

Multi-User Multi-File 

Support 
Yes Limited Fully supported 

Scalable Cloud 

Deployment 
Partial Limited Fully scalable and lightweight 

Setup Time 4–9 ms 4–9 ms 3–6 ms 

Key Generation Time 14-20 ms 18-25 ms 10-14 ms 

Encryption Time 13–24 ms 19–26 ms 9-13 ms 

Decryption Time 8-12 ms 9-16 ms 6-9 ms 

Memory Usage 800-1400 KB 750-900 KB 400-800KB 

User Revocation Time High Moderate Low (6–9 ms) 

 

ERDSAKCA maintains a lower encryption time, 

averaging between 9 ms and 13 ms, compared to 

MOKASE (13 ms to 24 ms) and KAASE (19 ms to 26 

ms).  

The linear increase in encryption time with the 

number of documents is evident across all schemes, but 

ERDSAKCA’s use of a single pairing operation results in 

a reduced computational overhead compared to the 

pairing-heavy approaches of MOKASE and KAASE.  
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Performance of Data Extraction/Decryption with 

Different File Attributes: Figure 6 illustrates the 

decryption performance of three schemes, ERDSAKCA, 

MOKASE, and KAASE across varying numbers of 

documents. ERDSAKCA consistently outperforms the 

other two, maintaining the lowest and most stable 

decryption times between 6-9 ms. MOKASE shows 

moderate performance with decryption times ranging 

from 8-12 ms, while KAASE exhibits the highest and 

most fluctuating times between 9-16 ms. Overall, 

ERDSAKCA demonstrates superior efficiency and 

scalability, making it the most effective scheme for 

handling increasing document volumes. 

The graph in Figure 7 illustrates the user 

revocation time (in milliseconds) for the ERDSAKCA 

scheme across varying numbers of documents. The 

revocation time fluctuates slightly but generally remains 

within a range of 6 to 9 ms, showing no clear upward or 

downward trend as the number of documents increases. 

This indicates that the proposed approach maintains a 

consistently low and stable revocation time, even as the 

data size scales, which demonstrates its efficiency and 

reliability in managing user revocation during data 

sharing. 

Performance of Data Size Memory Utilization for 

Processing Secure Data in the Cloud: Figure 8 

compares memory utilization. ERDSAKCA uses less 

memory compared to MOKASE and KAASE. 

To illustrate the practicality and advantages of 

ERDSAKCA, a comparative summary is presented in 

Table 4, highlighting key findings such as cloud setup 

time, encryption time, decryption time, user revocation 

time, and memory usage, along with core security, 

efficiency, and system-level features relative to two 

existing schemes, MOKASE and KAASE. This direct 

comparison emphasizes the unique strengths of 

ERDSAKCA in enabling multi-user access control, 

scalable deployment, and low computational overhead. 

 

5. Discussion 

The comparative analysis presented in Table 4 

clearly demonstrates that ERDSAKCA outperforms both 

MOKASE and KAASE in terms of efficiency, especially 

in dynamic environments with multi-user and multi-file 

access control requirements. 

First, ERDSAKCA offers robust dynamic 

revocation by updating ciphertext alone, eliminating the 

need for costly re-keying for authorized users which is 

an advantage not offered in either KAASE or MOKASE. 

Its constant-size aggregate key simplifies key 

management complexity while reducing transmission 

and storage overhead. 

Second, ERDSAKCA’s encryption and 

decryption times remain consistently low across all file 

sizes. Unlike KAASE, which depends heavily on pairing 

operations, ERDSAKCA minimizes computational load 

with a single pairing operation per file, significantly 

improving processing efficiency. 

Third, the built-in verification mechanism 

ensures that ciphertext updates and revocation 

operations are executed honestly, which is an essential 

security enhancement absent in earlier models. 

In terms of scalability, ERDSAKCA’s lightweight 

design allows smooth integration with large-scale cloud 

systems. Its lower memory consumption relative to 

MOKASE and KAASE makes it highly suitable for 

resource constrained environments. 

The performance advantages observed in 

ERDSAKCA, including reduced encryption and 

decryption times, efficient user revocation through 

ciphertext updates, and lower memory usage, align with 

recent research developments in revocable and 

aggregate key cryptographic systems [5, 6]. However, 

ERDSAKCA distinguishes itself by integrating a built-in 

ciphertext verification mechanism, addressing notable 

security gaps highlighted in recent studies [7, 12]. 

Furthermore, unlike existing models such as [11, 19], 

ERDSAKCA consistently maintains stable key-

generation and setup times across increasing document 

sizes, underscoring its practicality and scalability in 

dynamic multi-user cloud environments. 

 

6. Conclusion 

This article proposes the Efficient Revocable 

Dynamic Secure Aggregate Key Cryptosystem 

Approach (ERDSAKCA), which effectively implements 

key aggregation and user access control in a cloud 

environment based on a dynamic and revocable key-

aggregate cryptosystem. The proposed method updates 

the ciphertext on cloud servers, enabling revocation of 

user permissions without requiring legitimate users to 

change their secret keys. In addition, an extended 

system is introduced to accommodate the cloud 

environment, where the number of files is large and 

grows rapidly. A verification mechanism ensures that 

user revocation is executed correctly. Furthermore, the 

fundamental Key-Aggregate Cryptosystem (KAC) 

architecture is shown to be easily generalizable and 

expandable, allowing secure broadcasting of the 

aggregate key to multiple users in a real-world data-

sharing scenario. This lays the foundation for developing 

a flexible and scalable public-key based system for 

online data exchange in the cloud. According to the 

performance evaluation, the proposed approach 

achieves efficient user access control while significantly 

reducing transmission and storage costs compared to 

existing schemes. An additional enhancement of the 

proposed approach is the provision of identity-based 

privacy, addressing multi-user data conflicts in cloud 

computing data sharing. 
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