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Abstract: The emergence of cloud computing and I0oT has made effective and secure cryptographic schemes
essential for sharing data online. To protect sensitive data, data owners must encrypt files before storing them online
and grant decryption rights to authorized users. A novel approach, the Key Aggregate Cryptosystem (KAC), enables
users to decode multiple pieces of data types with one single constant key size, enhancing efficiency. In this article
the Efficient Revocable & Dynamic Secure Aggregate Key Cryptosystem Approach (ERDSAKCA) is tailored for cloud
environments. This innovative strategy not only simplifies the key management through KAC but also allows for
dynamic user revocation by updating the ciphertext, ensuring revoked users cannot access new data while non-
revoked users retain access without updating their private keys. The scheme also incorporates a verification
mechanism to ensure accuracy in user revocation and ciphertext updates. Compared to existing schemes,
ERDSAKCA effectively manages user access control and user revocation and reduces the costs associated with key
management and storage. Lastly, the scheme is shown to be selectively chosen plaintext-safe under the conventional
model, offering strong protection against cryptographic attacks.

Keywords: Aggregate Key Cryptosystem, Secure Data Sharing, Semantic Security Mechanism, Dynamic Access
Control Policy, Attribute Based Encryption.

Despite the growing adoption of cloud services,
access control remains a significant challenge.
Traditional access mechanisms either rely heavily on
CSPs or involve complex cryptographic management
that is impractical at scale. Moreover, ensuring fine-
grained access control, while allowing dynamic changes
(e.g., revoking users or modifying access policies), is
particularly difficult in distributed environments, and
many existing solutions are largely static, requiring
costly re-encryption and key redistribution that can
disrupt availability of services for authorized users [4].

1. Introduction

Cloud computing has emerged as a
transformative model that provides flexible, scalable,
and cost-effective access to shared computing
resources. Among its core services, cloud storage offers
virtualized storage infrastructure that reduces
dependency on local hardware and facilitates seamless
data access and management across distributed
environments. With the exponential growth in data,
organizations and individuals increasingly rely on cloud-
based services to store, retrieve, and share data
efficiently. Cloud storage allows users to offload massive
data to remote servers, improving operational agility and
minimizing infrastructure costs [1, 2]. Additionally, in
multi-user settings, the ability to share content securely
and selectively is essential for collaborative applications

Recent advances in key-aggregate
cryptosystems and searchable encryption address
revocation, delegation, and verifiability to varying
degrees [5-13]. Despite these advancements, key
challenges remain unaddressed. Many existing models

in fields like healthcare, education, and finance.
However, this convenience introduces critical security
concerns, especially when data owners relinquish
control to potentially untrusted cloud service providers
(CSPs) [3].

lack support for simultaneous revocation, verification,
and aggregation in a scalable manner, particularly in
multi-user, multi-file cloud settings. Most schemes
continue to rely on CSPs for executing revocation and
ciphertext updates without any guarantee of verifiability
from the data owner’s side. This introduces trust issues
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and potential for unauthorized access. Furthermore,
frequent re-keying and re-encryption in these schemes
cause significant overhead and limit real-time
collaboration. These limitations motivate a lightweight,
verifiable, and scalable revocable KAC scheme that
ensures secure access control and efficient key
management without affecting the accessibility of data
for legitimate, non-revoked users. A structured
comparison is provided in Section 2 (Table 1) and
highlights the specific gaps that motivate this work.

This article proposes the Efficient Revocable &
Dynamic Secure Aggregate Key Cryptosystem
Approach (ERDSAKCA) with the following contributions:

e Efficient Key Management: Using KAC to
aggregate multiple private keys into a single,
constant-sized key.

e Dynamic User Revocation: Supports revocation
by updating ciphertext, ensuring revoked users
cannot access new data without requiring non-
revoked users to update keys.

e Verification Mechanism: Includes a verification
algorithm to confirm accurate revocation and
ciphertext updates.

e Security Proof: Proven semantically secure
under the Generalized Decisional Hybrid Diffie-
Hellman Exponent (DHDHE) assumption.

e Performance Evaluation: Evaluates the
performance of the proposed scheme with the
existing schemes. The analysis shows that our
scheme reduces computational and storage
costs compared to existing schemes.

The subsequent sections of the article are
structured as follows. Section 2 presents the tabular
literature review. Section 3 outlines the materials and
methods, including the system model, cryptographic
background, and construction of the proposed
ERDSAKCA scheme. Section 4 presents the
experimental results, evaluating key performance
metrics such as setup time, encryption/decryption
efficiency, revocation performance, and memory usage.
Section 5 provides a detailed discussion, comparing
ERDSAKCA with existing schemes and highlighting its
advantages. Finally, Section 6 concludes the study and
suggests potential directions for future work. Author
declarations, Data Availability and References are
provided at the end of the manuscript.

2. Literature Review

To situate ERDSAKCA within current research,
Table 1 summarizes closely related KAC/KASE and
revocation oriented schemes relevant to multi-user,
multi-file cloud data sharing.

3. Materials and Methods

This section describes the foundational
concepts and cryptographic mechanisms employed in
the development of the proposed ERDSAKCA scheme.
The materials include the mathematical assumptions,
group structures, and cryptographic primitives used to
construct the key-aggregate framework. The methods
outline the setup of the system, key generation,
encryption and decryption processes, user revocation
strategy, and the integrated verification mechanism.
These components collectively enable secure, scalable,

and flexible data sharing in a multi-user cloud
environment.
3.1 Basic Preliminaries

This section, introduces the foundational

concepts and definitions related to KAC and its semantic
security, along with complexity assumption called the
Generalized Decisional n-Hybrid  Diffie-Hellman
Exponent (Generalized DHDHE).

3.1.1 Key Aggregate Cryptosystem (KAC)

The KAC, a cryptographic framework for secure
data sharing with fine-grained access control comprises
the following six randomized algorithms [14]:

1. The Setup function initializes the system with
public parameters PK and a secret parameter t,
which is only accessible to authorized data
owners.

2. The Keygen function outputs the public and
master-secret key pair (PK = Np, msk = N).

3. The Encrypt function takes three parameters: a
public key PK, a ciphertext class i, and a
message m. It returns the class i ciphertext C
corresponding to message m.

4. The UserRevoc function manages user access
by taking msk and a subset of ciphertext classes
S, computing access control parameters and an
aggregate key KS.

5. The Access Control and Key Distribution
delivers the aggregate key KS and access
control parameter U to users with appropriate
access rights through a secure channel.

6. The Decryption function decrypts the ciphertext
C for specific class i using aggregate key KS and
access control parameter U, and produces the
decrypted message m.

3.1.2 Keeping KAC Secure Semantically

The semantic security of a key-aggregate
encoding system in opposition to an adversary is defined
through the interaction between the attack algorithm A
and the challenger algorithm B.
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Table 1. Summary of related work

. . Aggregation / e Scope Gaps Addressed by
Ref Coreidea Revocation Key Size Verification ERDSAKCA
Search-only focus,
Blockchain-based Aggregate Blockchain- bIockchaln complexity/
[5] revocable KASE for Yes search keys (not | assisted Search latency; R
haring (1loT (non-interactive) IKKC ificati DSAKCA  targets file
group sharing (l1oT) genera ) verification sharing with lightweight
verification
KAC with  user | Yes . No explicit Updates may affecF
[6] | revocation for | (ciphertext Constant-size CSP-update Files non-revoked users,
selective arouns updates) ciphertexts check ERDSAKCA confines
group P impact and adds verifiability
Re-encryption cost on
Key-aggregate . ) . . revocation;
[7] proxy re-encryption Zﬁ; tig::? re égRgEregatlon via :?: hasized Files ERDSAKCA avoids per-
(KAPRE) yp P revocation  re-encryption
burden
Verifiable data o No lightweight aggregation;
[8] | sharing in dynamic | Not core focus Not Yes _(verlflable Files ERDSAKCA integrates
. key-aggregate sharing) ) A
multi-owner aggregation and verification
Search-only; ERDSAKCA
[9] | Multi-owner KASE Partial . Search-k_e y Not primary Search SUpp.ortS general f||_e
(search-oriented) | aggregation sharing and  dynamic
revocation
Search-specific;
Revocable ' .
online/offline KASE | Yes Search-key . ERDSAKCA generalizes to
[10] ) . Not primary Search | files and adds
(reduced online | (search context) aggregation .
ciphertext-update
cost) e
verification
KAASE (Authorized Adarecate/ Preprint and search-centric;
searchable Yes ggreg . ERDSAKCA covers
[11] . . authorized Not primary Search L
encryption with | (search context) multi-file  access  and
k search keys I
multi-key) verification
No verifiable revocation
Key-aggregate Aggregate No updates;
[12] | authentication Not core authentication CSP-update Files ERDSAKCA includes
cryptosystem check -
verification
Identity Based Egr)rl]-:r:lxr:ggement
[13] | Sonditional ~ PRE | Yes . Delegation Not primary | Files | ERDSAKCA keeps
with ciphertext | (Via evolution) focused .
. constant-size  aggregates
evolution JHISte
with simple updates
KAC-based access | Not native; No built-in  verification;
. . ' . Constant-size . . ERDSAKCA integrates
[14] | control for flexible | achievable  with Not primary Files e -
. . aggregates verification and dynamic
sharing KAC variants.
updates
Proofs for
Search-token search result . .
KASE foundations & | revocation onl Search-ke correctness; Limited o search;
[15] | ; y, ey ' | Search | ERDSAKCA targets
implementation (not general file | aggregation not CSP L
general file ciphertexts
access) update
checks.
- . Verification tied to search;
[18] EZ‘;‘gm verifiable Z‘Z‘;‘:ﬁﬁ;"e iearrgh;:;{] ;grssearch) Search | ERDSAKCA verifies file
ggreg ciphertext updates
Multi-owner search;
KASE under | Partial Search-key . ERDSAKCA supports
[19] multi-owner setting | (search) aggregation Not primary Search multi-owner/multi-file  and
CSP-side checks
BTG-RKASE  with Emergency-only niche;
fine-grained multi- | Yes Search-key . ERDSAKCA  generalizes
[20] delegation "break- | (search) aggregation Not primary Search revocation beyond
the-glass" emergencies
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The game advances through the following levels
[15]:

1. The adversary A starts by choosing a subset of
the ciphertext classes S c {1, 2, ..., n} that it
intends to attack. This set is fixed before seeing
any public parameters, aligning with a selective
security model.

2. The challenger B, in response, initiates the
Setup-i algorithm for each i € S, which involves
generating the public parameters and public key
PKi, along with access control parameter U.
These values are revealed to the adversary,
while the corresponding msk remains
confidential.

3. For each i € S, the challenger also generates
and provides the adversary with the aggregate
decryption key K_S for all ciphertext classes not
in S, ensuring the adversary has legitimate
access to non-targeted classes.

4. In the Challenge-i phase, the challenger
encrypts one of two challenge messages
chosen by the adversary for each class i € S,
and the adversary must guess which message
was encrypted.

In this security game, the adversary A begins by
selecting a subset S c {1, 2, ..., n} of ciphertext classes
it intends to attack. This choice is made before A
observes any system parameters or public keys,
ensuring a selective security model. The challenger B
then executes the Setup algorithm to generate the
system parameters, public key PK, and access control
parameter U, which are provided to A. Additionally, B
generates and gives A the aggregate decryption key Ks
for all ciphertext classes not in S, granting legitimate
access to those. For each i € S, B encrypts a randomly
chosen message based on a challenge bit, and A
attempts to guess the bit. The adversary succeeds only
if it correctly distinguishes all challenge ciphertexts in S.
The scheme is semantically secure if this advantage is
negligible over random guessing.

In our proposed approach, Generalized DHDHE
[16] assumption is used to prove security because it
better aligns with the needs of dynamic cloud
environments. The original DHDHE assumption is
designed for static settings with limited ciphertext-user
mappings, making it less suitable for systems with
frequent changes in user access and data classes. In
contrast, the generalized DHDHE supports polynomial-
size user and ciphertext class selections, making it more
appropriate for dynamic, multi-user data sharing
scenarios like ours. It captures the hardness of
distinguishing challenge ciphertexts under complex and
evolving key distributions, thereby enabling our
ERDSAKCA scheme to achieve secure and scalable
user revocation and access control. This broader
assumption provides stronger semantic security

guarantees against adaptive adversaries and ensures a
robust security foundation as the system scales in
complexity.

The first assumption is based on the
Generalised DHDHE, where during the setup phase, let
the parameters be 2n. Setar = (2n+1) - exfor{=0, 1, ...,
n—-1, and set a, = g*@™" e, for £ = n, using a € Z, as a
random variable. Choose b, from Z, and t, from Z, at
random, with b = b, + t,, and set a, = bt;n and a, = bt,n.
Identifying K = (2n)2nfrom a random element in G2, is the
objective, given (Vi € {0, 1, ..., n}, Y3, Y, K). For the
generalized DHDHE problem, the advantages of a
polynomial-time adversary A are described as:

AdvRPPHE = [Pr[A (X hieorm, Y. Yo K= g35 ) =1] -
PrA(Xi bietor..m, Yi.Y2 K= gb,) =1]| (1)

The above equation 1 describes the dynamic
key generation for multi-users with polynomial user
selection. This new assumption is clearly an extension
of the DHDHE assumption, as can be seen from this.
The specific reduction of the generalized DHDHE
assumption to the DHDHE assumption can be achieved
by multiplying a1 and Yo.

3.1.3 Notation Summary

To improve clarity and support understanding of
the equations in the paper, Table 2 summarizes the key
symbols and terms used throughout the mathematical
formulations.

Table 2. Summary of Symbols and Notations

Symbol Description

P,Q Generators of bilinear groups G;, G
respectively.

Gi, G, | Cyclic groups of prime order p; Gris the

Gr pairing result group.

e(-,) Bilinear pairing function e : G; x G, — Gr.

atr Random scalars from Z,.

A A Number of logical data/user blocks.

B Block size for data classes and users.

n=A x B | Total number of data classes.

m = A x B | Total number of users.

PK, msk | Public key and master secret key.

Bsk Broadcast secret key.

PK}, Public key components for attributes.

Ya', Ya® Secret exponents

Ci Ciphertext tuple (Cy, C4, C, Cj).

S, S* Sets of data classes and authorized user
indices.

Ks Aggregate key for data class subset S.

K(S, S*) Broadcast key for users S.

dir User's private key.

aSa, bSa | Summations used in key derivation.

Xi, Y1, Y, | Public values in the DHDHE game.

AdvRHPHE | Adversary’s advantage in distinguishing
ciphertexts.

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 124



Vol 7 Iss 5 Year 2025

Sameera Mahammad & K. Usha Rani /2025

3.2 Process of Dynamic & Revocable

Collaborative Key Sharing

This section describes an approach to dynamic
key aggregate storage presuming n ciphertext classes
with multiuser data sharing. While the size of the public
parameters grows linearly with the number of ciphertext
classes, our scheme guarantees that the ciphertext and
aggregate key remain constant in size. Users’ access
rights can be dynamically revoked using the suggested
scheme, all without requiring extensive changes to the
system parameters. Along with the proposal, a security
proof of concept is also offered. The use of the user
revocation mechanism in KAC requires revocable key-
aggregate encryption, as outsourced users in the cloud
exhibit the characteristic of perpetual change.

When a user’s credentials expire, they can have
their access revoked using the Aggregate Dynamic &
Revocable Key Cryptosystem (ADRKC), an
improvement on key aggregate cryptosystems. Setup,
KeyGen, Encrypt, UserRevoc, Update, Decrypt, and
Verify are the seven polynomial-time algorithms that
make up the dynamic and revocable key-aggregate
encryption scheme [16, 17]. Their definitions are as
follows:

1. The first input to the Setup algorithm is the
maximum quantity of files n and the protection
factor 1A. It returns Params, the public
parameter.

2. APublic Key (PK) and a master secret key (msk)
are produced by a key generation algorithm by
taking Params as input.

3. Take the PK, an index i representing the file, a
message m, and the Params as inputs to the
encryption algorithm. It generates a ciphertext
C.

4. The UserRevoc algorithm accepts the msk, a set
S of indices that correspond to various files, the
user’s identity uid, and the Params as input.
Users’ private key SK is outputted.

5. The update algorithm accepts the following
parameters: a ciphertext C, a user revocation
set R, and the Params. The result is a modified
ciphertext a.

6. The following parameters are passed to the
decryption algorithm: the cipher text C, the user
private key SK, the set S, an index i representing
the cipher text C, the user revocation set R, and
the Params. Either the result u of 1 is output if (i
€ S) A (uid /e R).

7. The Verify algorithm accepts a cipher text C, an
updated cipher text a, a PK, and Params as the
input. If the revocation has been executed
honestly and the cipher text has been updated

correctly, the cloud server will
Otherwise, it will output 0.

output 1.

Figure 1 depicts the model developed for use
with the ADRKC in a cloud setting. There are three parts
to it: the user, the owner, and the cloud service provider.

In order to obtain the system parameters, data
owner Alice runs the setup algorithm. Then, using a
revocable key aggregate encryption system, several
files ul, u2, .. can be shared with other people over the
cloud server.

After that, Alice secretly stored msk and used
KeyGen (params) to generate a random public/master
secret key-pair (PK, msk).

Afterward, by running Encrypt (PK, i, R, m,
params) on the cloud server, Alice and anyone else who
helped Alice can upload the encrypted files. Once Alice
decides to share multiple files with Bob, Alice will run the
UserRevoc algorithm (msk, uid, S, params) to generate
SK for Bob based on the indices of authorized files and
the user’s identity. Due to the fixed size of SK, Alice can
easily send it to Bob through a secure channel at a low
communication cost. The user revocation list R will be
sent to CSP by Alice whenever she wishes to remove
users. In order to update the corresponding ciphertext,
CSP then invokes the algorithm Update (PK, R, a, and
params). Bob’s revoked access must not be disabled
before downloading the new ciphertext from the cloud
server and using the private key to run the Decrypt
algorithm (O, SK, T, i, R, params) to extract the actual
text. If the user’s access has been cancelled, like David’s
in Figure 1, he will lose access to the files because he
cannot decipher the updated ciphertext. At last, by using
the algorithm Verify (a, O, params), Alice can confirm
that the user revocation is successfully completed and
check the changed ciphertext. Such verifiability in
outsourced settings is similarly emphasized in [18],

though the model lacks integration with dynamic
ciphertext updates.
Dynamic access control: The ability to

dynamically update user access to a set of ciphertexts is
a key component of the proposed scheme. To remove a
user’s access to a set of ciphertext classes after they
have been granted an aggregate key by the data owner
in KAC, the owner must first change the master secret
key. However, it is expensive and perhaps problematic
to change the msk each time a user’s ciphertext class
access rights need to be updated. Our plan, however,
addresses this issue through enabling the owner of data
to instantly modify permissions of user.

To accomplish this, in the proposed scheme, the
parameter U = tP is not included in the ciphertext but
rather in the aggregate key. Any encrypted ciphertext
class in subset S can be decrypted by the user if they
have the correct value of U. Imagine for a moment that
the data owner wants to change who can access subset
S.
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Figure 1. General Processes of Dynamic and Revocable Multi Data Sharing with Aggregate Key Cryptosystem.

She has the option to reencrypt all the

ciphertexts in that class with a new random element t' €

Zg. Then, she can only grant access to the users she
wants by providing them with the updated dynamic
access parameter U’ = t'P. If you use the same t for
encryption and decryption, the decoded value only will
provide the exact information m. In contrast, some earlier
techniques could not control access privileges
effectively, as they relied solely on the random
parameter embedded in the ciphertext. This represents
a significant difference from the proposed method.
Moreover, the parameter U remains constant in size and
is transmitted only when updated, ensuring that system
performance remains largely unaffected.

3.3 Construction of Efficient Revocable &
Dynamic Secure Aggregate Key Cryptosystem
Approach (ERDSAKCA)

This section describes the construction of the
proposed Efficient, Revocable, and Dynamic Secure
Aggregate Key-based Cryptosystem for Access control
(ERDSAKCA) encryption scheme, designed for secure,
efficient, and revocable multiuser file sharing in cloud
environments. The scheme outlines the implemented
processes, security level performance, multiuser
revocation, and dynamic access control in data sharing.

3.3.1 Process
The implemented process as follows:

1) Setup of Cloud Environment: Pick a € Zq at random
using SetUpB (1%, n, m). The system parameter
should be output shown in Algorithm 1 as The
parameters are set to include the following: P, Q, Y
P, a, B, Y Q, a,BC. Throw out a. Find A as |[n/B| and
A’ as |[m/B].

Algorithm 1 Algorithm process of cloud setup
environment

1) Create a bilinear map group system B =
2) (p,G,GT,e(:,")).

3) Create a set of public parameters called PubK
with the following definition: g = gol € G for every
le{,2,...,n,n+2,...,2n}.

4) Choose a collision-resistant hash function H1:
{0, 1} x {0, 1} — {0, 1}*that is one-way.

5) H2: {0, 1} x {0, 1}»* — is a collision-resistant
hash function that must be monotone minimum,
and set SP «—

6) (B, PubK, H1, H2).
7) KS«—y{0,1}|T=0.

2) Gen of User Key: Probably select the attributes: y1, .

..,YA€EZqg, &y1,...,yA' € Zg. msk1 =(y1, ...,
YA) & msk2 = (y1', ..., yA"). After that, specify for 1

<a<Aand1<a <A, asshownin equation 2 & 3.

PK{* = y{'P.PK7 = v{'Q
PK§ = y3P.PK{ = v3Q 2
PK, = (PK{,...,PK{
PK, = (PK},...,PK{)
PK; = (PK%,...,PK{) (3)

As msk = (msk1, msk2), print the master secret
key, and as PK = (PK1, PK2, PK3, PK4), print the public
key. Uniformly at random choose the secret broadcast
key bsk = y3 from Zq and provide it as additional output.
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3) Encrypt of Owner Data: Parameterized function t
(PK, i, M): find a = |i/B] and b is calculated as (i mod
B) + 1. Consider a-th element of PK2 as PKa.

Algorithm 2 Encryption of Files for Secure Data
Sharing in the Cloud

1) Choose a value t from the set Zp.
2) Ifthe valuelis from the set {1, 2, ..., }, then

3) C11 « gt.

4) C12 « (v. g) the fifth time: &l = (C11, C12).

5) C1KW1 « ¢wi, je « for all integers from 1 to x in
6.

6) For every i and j in the set « KW, do the
following:

7) C1KWi « H2(wi, j) -
The equation KW = C13 « (C1KW1, {C1KWi})

, Y} and wi, j e« KW

e (gl, gn). Eleventh: Cl «

whereie{x+1,x+2,...

8) e« KW

9) C1=(C11,C12,C13,C14)
10) The owner of the data keeps the ciphertext C1
on the server in the cloud.

Select an element t from the set Zqg at random
and print out the partial cipher text CO as shown in
equation 4.

C = (Co,C1, €5, C3) = (tQ,tPKS, t(PKS + Q)M -
e(Pbl tQ)) (4)

Conversion of cipher text from random user
attributes using the above equation.

Enter the partially encrypted cipher text CO = (co,
C1, C2, c3), the msk = (mskl, msk2), and the bsk as
arguments to the System Encrypt function shown in
algorithm 2.

Here, the class id i is the extra piece of data that
is needed.

With a = |i/B], we can denote the a-th
component of msk1 as msk12.

Show the decipher text C' in its final form as
specified in equation 5.

C' = (G, €1, C3,C3)
= (cg,¢1 — (bsk - msk1*)Q,cy, c3)
= (tQ,(t — bsk)PK7, t(PK; + Qp),M.e(P,,tQ1)) (5)

This is formation of decrypted text with cipher
text from equation 4.

4) Password Generator (param, msk, "i): The user’s
private key, denoted as d’, should be displayed as
shown in equation 6.

d} = mskZZ: P= y;;, (6)

This is the same setting d' to a'BPKA 3 in an indirect
way.

5) User Revoc of Key (param, msk, S): Suppose msk
is equal to (msk1, . .., mskA). The set Sa is defined
as{imod B +1|i € S, di/Be = a} for the part of indices
of the class S where 1 <a <A

Next, calculate for all values of a from 1 to A,
evaluate the values from revocable keys for users as
shown in equation 7.

K¢ = msk{ Yjes, Pre1-j = Y1 Ljes, Pr+1-; )

Output of the final attributes sequences as
follows:

Ks = (K¢, ...,K&) (8)

6) Multi-User Broadcast Secure Data Share (param,
KS, S+, PK, bsk): The following is a broadcast to all
users in S* of the aggregate key KS = (K1 S,
..... KAS). Define S+ as the set of user ids where 1 <
a*< A* and for each i in S*. define ax as the product
of {imod B + 1|i € S, di/Be = a}.

Pick tx at random from the set Gq and set it for
1 < ax <Ax.

bsa = ZjESa QB+1—j (9)

Based on the above sequences (equation 9),
generated output collaborative key as shown in
equations 10 & 11.

Kis sty = (tQ, Ky, K;) (10)
Here
K, = (t(PK{ + bg,), ..., t(PK} + bs,))
Ky = ({e(P5,tQ1) - e(K&, Q)" Y1 <a<a) (11)

Note that K (S, S*) now comprises of O (A + A%)
group elements.

Algorithm 3. Decryption of Files for Secure Data
Sharing in the Cloud

1) Ifiis a member of the set S, then do the following:

2) |If pub € Sis true, then

3) y < Sig[11i][eSig].

4) R1«<—¢(Tri+ pub™, Cl)/e(pub=?, C2).

5) e(C1KWI, Tr2) withix x+yandy'"

6) Hii «— C1KWI [e(C4, Tr2)e(pub2, Cl12)e(pub™,
C11)] where Tr0, pub™, and pub are the inputs
and C1 is the output.

7) ThesetpubieSig[n+1-jlisdefinedasy €S,
wherej=Ig[n+1-]].

8) Ri« 1if (Hi>Tri1)and (Hi < Tri2).

9) Include Hii in the Hash Value List (HVL):

10) Ri < 0 “Ri equals zero.”

11) For every i in the setf x 1 x 2.... y', execute the
following:
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12) If RIA = 1, then add i to the Search Result List
(SRL).
13) The return failure case.

7) Decrypt of Keys: The function t (Param, C, K(S, S,
i', di', S, S') is defined as follows: The output will be
zero if either i’ is an element of S or i’ is an element
of S'. If not, then multiply di/Be by i' mod B + 1 in
algorithm 3, and then set:

as, = Zjesa \rp Po+1—j+pr (12)
bSa = ZjESa Pb+1—j' (13)

The set C can be defined as (c0, c1, ¢2, ¢3) and

Kiissy = (kioy (e, @), (k0 k) ) (14)

Back to the decrypted message as follows:

e(di+as; ko)

_ e(bsy c1)e(asy o)
M= Gk e(Pp+1k?)

e(bs, c2)

(15)

The framework mentioned earlier is designed for
use by a sole owner of the data. To accommodate mO
owners of data, mO such setups must be initiated similar
to the multi-owner KASE approach described in [19].
Proof of validity for this construction can be skipped, as
it mirrors the construction of fundamental KAC.

The following theorem addresses the non-
adaptive CPA security of the generalized extended KAC
construction. Let G1 and G2 be two subgroups of order q
of a bilinear elliptic curve. The broadened and enhanced
KAC, which handles n data classes and m users, is (T,
B)-CPA secure if the non-symmetric decision (1, B, B)-
BDHE assumption holds in (Gi1, G2) for any positive
integer triple (n, m, B) where B < min (n, m).

Additionally, the extended KAC construction can
be further developed to achieve Chosen Ciphertext
Attack (CCA) security using appropriate techniques.

3.3.2 Security Level Performance

An essential part of the system’s performance is
the selection of A, A0, and B. The construction makes it
very evident that there is a constant number of group
elements that make up the ciphertext. There are O(B)
group elements in the public parameter and O(A + A') in
the public key PK and the broadcast aggregate key K(S,
S'). So, for uses that necessitate minimal overhead
aggregate keys, a smaller value of B is beneficial. The
ordering notation for the storage complexities of
generalized methods is summarized in Table 3. The
space complexity of any group member in G1, G2, and
GT is assumed to be O(nl), O(n2), and O(nT),
respectively.

Table 3. Complexity of Space with Processing of

Key Aggregate
Parameter Complexity of the Sequence
Param O(B(n1 + n2))
msk O(A + Ailog q)
PK O(An1+An2)
bsk O(log q)
c O(n1+ny)
Ks.s) O((A+1)n2+Any)

3.3.3 Multi User Revocation & Dynamic Access in
Data Sharing

The foundation of our structure is a component
that allows B data classes and users to function. This
allows the system to manage n = AxB data classes and
m = AxB data users. The system is designed to plan and
execute A x A instances of this component
simultaneously.

Although each building block uses its own
private and public key components, they all share the
same set of public parameters. The construction
maintains constant ciphertext overhead while balancing
the size of the public parameters with the aggregate key
and public key sizes.

Adding and removing users from an existing list
is especially important in multi-user contexts, where both
the total number of users and their individual
permissions to access resources are subject to ongoing
change [20], including emergency access scenarios
using break-the-glass delegation. The extended KAC
construction seamlessly handles the addition of new
users as shown in the Figure 2. To add a new user,
simply generate an updated key for each newly joined
user. From that point onward, all broadcast operations of
the aggregate key will account for the access rights of
both recent and existing users.

Notably, the system does not need to recreate a
basic size-B block in the enlarged framework to
accommodate new users. Adding new users only
increases the value of parameter A, which is equivalent
to creating additional instances of the same basic
building block. Consequently, there is no need to modify
the existing owner/user keys or the public parameters.
This compatibility with broadcast encryption ensures the
system can handle an increased number of users
without complications.
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Figure 2. Extended KAC with User Management, Revocation and Traitor Tracing Features

User revocation, a fundamental feature of
broadcast encryption systems, is also achieved at no
additional cost. For instance, if a data owner decides that
a specific user should no longer access any documents
uploaded to the cloud, they can instruct the system to
exclude that user’s identity from future broadcast
operations. This effectively prevents the revoked user
from accessing aggregate keys associated with any new
data the owner uploads to the cloud. The corresponding
security guarantee comes naturally from the collision
resistance property of the extended KAC construction,
which is not incurable at all. Specifically, the collusion
resistance property ensures that a revoked user’s prior
knowledge of aggregate Keys do not compromise
access to future documents, as their access rights do not
cover the new indexes.

While revoked users naturally retain access to
previously existing documents (which they could have
downloaded and saved prior to revocation), revoking
access to such documents is often unnecessary.
However, if the data owner wishes to update an existing
document and prevent a revoked user from accessing it,
they can assign a different index to the updated
document.

Revocation is commonly employed when rogue
or compromised users threaten the system’s security.
Tracing such users, however, is more complex and
requires traitor-tracing systems. Consider a scenario as
shown in Figure 2 in which the data owner shares an
aggregate key for a specific subset S of plaintext data
with a group of authorized users S. A potential threat

arises if a malicious actor compromises one of the users
in the receiver set S, obtains their secret key, and
develops a decoder that unauthorized parties can use to
access the plaintext.

To address this, the data owner can employ a
tracing technique that uses a publicly available malicious
decryptor to identify at least one compromised user
index and revoke their access. A traitor-tracing system
is valuable in this context. Although this study does not
aim to provide a comprehensive description of the
integration of the extended KAC framework with a traitor
tracking scheme, it should be noted that the extended
KAC framework could potentially leverage several
proposals from the literature that have explored
integrating traitor tracking with broadcast encryption,
with varying degrees of success.

4. Results

The performance of the proposed ERDSAKCA
scheme is evaluated against two closely related and
widely cited schemes, Key-Aggregation Authorized
Searchable Encryption Scheme (KAASE) [11] and Multi-
Owner Key-Aggregate Searchable Encryption Scheme
(MOKASE) [19], which represent the state-of-the-art in
key-aggregate searchable encryption with revocation
and multi-user capabilities. The evaluation focuses on
key metrics, including setup time, key generation,
encryption, decryption, user revocation, trapdoor
generation, and memory utilization, as illustrated in
Figures 3 through 8.
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Figure 3. Performance evaluation of cloud setup environment
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Figure 7. Performance of proposed approach in term of user revocation

For the cloud environment setup, the
implementation was carried out using the latest version
of CloudSim, with Java and NetBeans as the
development tools. Experiments were conducted with
document counts ranging from 10 to 100 in increments
of 10, each document limited to 10 KB and containing
randomly selected words from a dictionary.

Cloud Setup Environment: Figure 3 shows the
cloud setup time for ERDSAKCA, MOKASE, and
KAASE as the number of documents increases.
ERDSAKCA consistently exhibits the lowest setup time,
ranging from approximately 3 ms to 6 ms, compared to
MOKASE (4 ms to 9 ms) and KAASE (4 ms to 9 ms).
The setup time for ERDSAKCA grows linearly with the
number of documents but remains significantly lower,

demonstrating its efficiency in initializing the cloud
environment.

Key Generation Based on Different Attributes:
As depicted in Figure 4, the key generation time for
ERDSAKCA remains nearly constant, fluctuating
between 10 ms and 14 ms across varying document
counts. In contrast, MOKASE and KAASE show slightly
higher times, ranging from 14 ms to 20 ms and 18 ms to
25 ms, respectively. This near-constant performance of
ERDSAKCA highlights its scalability in generating keys,
even as the number of attributes increases.

Encryption Time to Explore Files in the Cloud:
Figure 5 illustrates the encryption time for ERDSAKCA,
MOKASE, and KAASE.
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Table 4. Comparative Summary of ERDSAKCA with MOKASE and KAASE

Feature MOKASE KAASE ERDSAKCA (Proposed)
Key Management Single key per Attrlbute—based, fixed- Constant-size key; aggregate
owner size key broadcast
: . Limited, no Moderate, requires Efficient, revokes via ciphertext
Dynamic User Revocation . .
ciphertext update | partial updates update
Verification Mechanism Not integrated Basic hash-based Intggratgd ciphertext update
verification
Ciphertext Size Variable Constant Constant
Trapdoor Generation Supported Supported Supported
Semantic Security BDHE-based ABE W'.th trapdoor Generalized DHDHE-based
protection
Multi-User Multi-File o
Support Yes Limited Fully supported
Scalable Cloud Partial Limited Fully scalable and lightweight
Deployment
Setup Time 4-9 ms 4-9 ms 3-6 ms
Key Generation Time 14-20 ms 18-25 ms 10-14 ms
Encryption Time 13-24 ms 19-26 ms 9-13 ms
Decryption Time 8-12 ms 9-16 ms 6-9 ms
Memory Usage 800-1400 KB 750-900 KB 400-800KB
User Revocation Time High Moderate Low (6—9 ms)

ERDSAKCA maintains a lower encryption time,
averaging between 9 ms and 13 ms, compared to
MOKASE (13 ms to 24 ms) and KAASE (19 ms to 26

ms).

The linear increase in encryption time with the
number of documents is evident across all schemes, but
ERDSAKCA's use of a single pairing operation results in
a reduced computational overhead compared to the

pairing-heavy approaches of MOKASE and KAASE.
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Performance of Data Extraction/Decryption with
Different File Attributes: Figure 6 illustrates the
decryption performance of three schemes, ERDSAKCA,
MOKASE, and KAASE across varying numbers of
documents. ERDSAKCA consistently outperforms the
other two, maintaining the lowest and most stable
decryption times between 6-9 ms. MOKASE shows
moderate performance with decryption times ranging
from 8-12 ms, while KAASE exhibits the highest and
most fluctuating times between 9-16 ms. Overall,
ERDSAKCA demonstrates superior efficiency and
scalability, making it the most effective scheme for
handling increasing document volumes.

The graph in Figure 7 illustrates the user
revocation time (in milliseconds) for the ERDSAKCA
scheme across varying numbers of documents. The
revocation time fluctuates slightly but generally remains
within a range of 6 to 9 ms, showing no clear upward or
downward trend as the number of documents increases.
This indicates that the proposed approach maintains a
consistently low and stable revocation time, even as the
data size scales, which demonstrates its efficiency and
reliability in managing user revocation during data
sharing.

Performance of Data Size Memory Utilization for
Processing Secure Data in the Cloud: Figure 8
compares memory utilization. ERDSAKCA uses less
memory compared to MOKASE and KAASE.

To illustrate the practicality and advantages of
ERDSAKCA, a comparative summary is presented in
Table 4, highlighting key findings such as cloud setup
time, encryption time, decryption time, user revocation
time, and memory usage, along with core security,
efficiency, and system-level features relative to two
existing schemes, MOKASE and KAASE. This direct
comparison emphasizes the unique strengths of
ERDSAKCA in enabling multi-user access control,
scalable deployment, and low computational overhead.

5. Discussion

The comparative analysis presented in Table 4
clearly demonstrates that ERDSAKCA outperforms both
MOKASE and KAASE in terms of efficiency, especially
in dynamic environments with multi-user and multi-file
access control requirements.

First, ERDSAKCA offers robust dynamic
revocation by updating ciphertext alone, eliminating the
need for costly re-keying for authorized users which is
an advantage not offered in either KAASE or MOKASE.
Its constant-size aggregate key simplifies key
management complexity while reducing transmission
and storage overhead.

Second, ERDSAKCA’s encryption and
decryption times remain consistently low across all file
sizes. Unlike KAASE, which depends heavily on pairing

operations, ERDSAKCA minimizes computational load
with a single pairing operation per file, significantly
improving processing efficiency.

Third, the built-in verification mechanism
ensures that ciphertext updates and revocation
operations are executed honestly, which is an essential
security enhancement absent in earlier models.

In terms of scalability, ERDSAKCA'’s lightweight
design allows smooth integration with large-scale cloud
systems. Its lower memory consumption relative to
MOKASE and KAASE makes it highly suitable for
resource constrained environments.

The performance advantages observed in
ERDSAKCA, including reduced encryption and
decryption times, efficient user revocation through
ciphertext updates, and lower memory usage, align with
recent research developments in revocable and
aggregate key cryptographic systems [5, 6]. However,
ERDSAKCA distinguishes itself by integrating a built-in
ciphertext verification mechanism, addressing notable
security gaps highlighted in recent studies [7, 12].
Furthermore, unlike existing models such as [11, 19],
ERDSAKCA consistently maintains stable key-
generation and setup times across increasing document
sizes, underscoring its practicality and scalability in
dynamic multi-user cloud environments.

6. Conclusion

This article proposes the Efficient Revocable
Dynamic Secure Aggregate Key Cryptosystem
Approach (ERDSAKCA), which effectively implements
key aggregation and user access control in a cloud
environment based on a dynamic and revocable key-
aggregate cryptosystem. The proposed method updates
the ciphertext on cloud servers, enabling revocation of
user permissions without requiring legitimate users to
change their secret keys. In addition, an extended
system is introduced to accommodate the cloud
environment, where the number of files is large and
grows rapidly. A verification mechanism ensures that
user revocation is executed correctly. Furthermore, the
fundamental Key-Aggregate Cryptosystem (KAC)
architecture is shown to be easily generalizable and
expandable, allowing secure broadcasting of the
aggregate key to multiple users in a real-world data-
sharing scenario. This lays the foundation for developing
a flexible and scalable public-key based system for
online data exchange in the cloud. According to the
performance evaluation, the proposed approach
achieves efficient user access control while significantly
reducing transmission and storage costs compared to
existing schemes. An additional enhancement of the
proposed approach is the provision of identity-based
privacy, addressing multi-user data conflicts in cloud
computing data sharing.

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 133



Vol 7 Iss 5 Year 2025

Sameera Mahammad & K. Usha Rani /2025

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

A.Q. Khan, M. Matskin, R. Prodan, C. Bussler, D.
Roman, A. Soylu, Cloud storage cost: a
taxonomy and survey. World Wide Web, 27(36),
(2024) 1-33. https://doi.org/10.1007/s11280-
024-01273-4

P. Aryan, S.D. Shetty, Designing a secure,
scalable, and cost-effective cloud storage
solution: A novel approach to data management
using NextCloud. TrueNAS, and QEMU/KVM,
International Conference on Computational
Intelligence and Network Systems (CINS), IEEE,
United Arab Emirates.
https://doi.org/10.1109/CINS63881.2024.108644
01

E. Alhelali, K.M. Ramokapane, J. Such, Multiuser
privacy and security conflicts in the cloud. CHI
'23: Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, (2023) 1-
6. https://doi.org/10.1145/3544548.3581307

L. Golightly, P. Modesti, R. Garcia, V. Chang,
Securing distributed systems: A survey on
access control techniques for cloud, blockchain,
IoT and SDN. Cyber Security and Applications, 1,
(2023) 100015.
https://doi.org/10.1016/j.csa.2023.100015

K. Zhang, X. Hu, J. Zhao, L. Wei, J. Ning,
Blockchain-based revocable key-aggregate
searchable encryption for group data sharing in
cloud-assisted Industrial I0T, IEEE Internet of
Things Journal, 12(11), (2025) 16899-16911.
https://doi.org/10.1109/J10T.2025.3534837

J. Liu, J. Qin, X. Zhang, H. Wang, Efficient key-
aggregate cryptosystem with user revocation for
selective group data sharing in cloud storage,
IEEE Transactions on Knowledge and Data
Engineering, IEEE, 36(11), (2024) 6042—6055.
https://doi.org/10.1109/TKDE.2024.3397721

G. Pareek, B.R. Purushothama, KAPRE: Key-
aggregate proxy re-encryption for secure and
flexible data sharing in cloud storage. Journal of
Information Security and Applications, 63, (2021)
103009.
https://doi.org/10.1016/}.jisa.2021.103009

J. Zhao, Q. Su, Verifiable data sharing scheme
for dynamic multi-owner setting. arXiv preprint,
arXiv:2308.00239 (2023) 113-125.
https://doi.org/10.5121/csit.2023.131309

M. Padhya, D.C. Jinwala, MULKASE: A novel
approach  for  keyaggregate  searchable
encryption for multi-owner data. Frontiers of

Information Technology & Electronic
Engineering, 20(12), (2019) 1717-1748.
https://doi.org/10.1631/FITEE.1800192

M. Padhya, D.C. Jinwala, R-OO-KASE:
Revocable  online/offline  key  aggregate
searchable encryption. Data Science and
Engineering, 5(4), (2020) 391-418.

[11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

https://doi.org/10.1007/s41019-020-00136-y

H. Wang, KAASE: Key-aggregation authorized
searchable encryption scheme for multi-key
encryption data sharing, SSRN preprint (2022).
https://dx.doi.org/10.2139/ssrn.4063519

K. Alimohammadi, M. Bayat, H.H. Javadi, A
secure key-aggregate authentication
cryptosystem for data sharing in dynamic cloud
storage. Multimedia Tools and Applications,
79(3), (2020) 2855-2872.
https://doi.org/10.1007/s11042-019-08292-8

S. Yao, R.V. Dayot, H.J. Kim, I.H. Ra, A novel
revocable and identity-based conditional proxy
re-encryption scheme with ciphertext evolution
for secure cloud data sharing. IEEE Access,
9(2021) 42801-42816.
https://doi.org/10.1109/ACCESS.2021.3064863

J. Liu, J. Qin, W. Wang, L. Mei, H. Wang, Key-
aggregate based access control encryption for
flexible cloud data sharing. Computer Standards
& Interfaces, 88, (2024) 103800.
https://doi.org/10.1016/j.¢si.2023.103800

M. Kamimura, N. Yanai, S. Okamura, J.P. Cruz,
Key-aggregate searchable encryption revisited:
formal foundations for cloud applications and
their implementation. IEEE Access, 8, (2020)
24153-24169.

https://doi.org/10.1109/ACCESS.2020.2967793

Q. Gan, X. Wang, D. Wu, Revocable key-
aggregate cryptosystem for data sharing in cloud.
Security and Communication Networks, 2017,
(2017) 1-11.
https://doi.org/10.1155/2017/2508693

S. Patranabis, Y. Shrivastava, D. Mukhopadhyay,
Dynamic key-aggregate cryptosystem on elliptic
curves for online data sharing. In International
conference on cryptology in India, Springer
International Publishing.
https://doi.org/10.1007/978-3-319-26617-6 2

X. Wang, X. Cheng, Y. Xie, Efficient verifiable
key-aggregate keyword searchable encryption
for data sharing in outsourcing storage. |IEEE
Access, 8, (2019) 11732-11742.
https://doi.org/10.1109/ACCESS.2019.2961169

T.Li, Z.Liu, C.Jia, Z.Fu, J.Li, Key-aggregate
searchable encryption under multi-owner setting
for group data sharing in the cloud, International
Journal of Web and Grid Services, 14(1), (2018)
21-43.
https://doi.org/10.1504/IJWGS.2018.088358

M. Padhya, D.C. Jinwala, (2019) BTG-RKASE:
Privacy preserving revocable key aggregate
searchable encryption with fine-grained multi-
delegation break-the-glass access control.
Proceedings of the 16th International Joint
Conference on e-Business and
Telecommunications — SECRYPT, 2, 109-124.
https://doi.org/10.5220/0007919901090124

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 134


https://doi.org/10.1007/s11280-024-01273-4
https://doi.org/10.1007/s11280-024-01273-4
https://doi.org/10.1109/CINS63881.2024.10864401
https://doi.org/10.1109/CINS63881.2024.10864401
https://doi.org/10.1145/3544548.3581307
https://doi.org/10.1016/j.csa.2023.100015
https://doi.org/10.1109/JIOT.2025.3534837
https://doi.org/10.1109/TKDE.2024.3397721
https://doi.org/10.1016/j.jisa.2021.103009
https://doi.org/10.5121/csit.2023.131309
https://doi.org/10.1631/FITEE.1800192
https://doi.org/10.1007/s41019-020-00136-y
https://dx.doi.org/10.2139/ssrn.4063519
https://doi.org/10.1007/s11042-019-08292-8
https://doi.org/10.1109/ACCESS.2021.3064863
https://doi.org/10.1016/j.csi.2023.103800
https://doi.org/10.1109/ACCESS.2020.2967793
https://doi.org/10.1155/2017/2508693
https://doi.org/10.1007/978-3-319-26617-6_2
https://doi.org/10.1109/ACCESS.2019.2961169
https://doi.org/10.1504/IJWGS.2018.088358
https://doi.org/10.5220/0007919901090124

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Authors Contribution Statement

Sameera Mahammad: Conceptualization, Validation,
Investigation, Writing - Original Draft, Visualization. K.
Usha Rani: Supervision, Project administration,
Validation, Writing - Review & Editing. Both the authors
approved the final version of the work.

Funding

The authors declare that no funds, grants or any other
support were received during the preparation of this
manuscript.

Competing Interests
The authors declare that there are no conflicts of interest
regarding the publication of this manuscript.

Data Availability

The data supporting the findings of this study can be
obtained from the corresponding author upon
reasonable request.

Has this article screened for similarity?

Yes

About the License

© The Author(s) 2025. The text of this article is open
access and licensed under a Creative Commons
Attribution 4.0 International License.

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 135



