

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 121

R
E

S
E

A
R

C
H

 A
R

T
IC

L
E

D
O

I:
 1

0
.5

4
3

9
2

/
ir

jm
t2

5
5

8

Dynamic and Revocable Multi File-Multi User Access Control based

Aggregate Key Cryptosystem to Secure Data Sharing in Cloud

Computing

Sameera Mahammad a, b, *, K. Usha Rani a

a Department of Computer Science, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
b Department of Computer Science, D.K. Govt. College for Women (A), Nellore, Andhra Pradesh, India

* Corresponding Author Email: samee2016@gmail.com
DOI: https://doi.org/10.54392/irjmt2558

Received: 07-11-2024; Revised: 23-08-2025; Accepted: 09-09-2025; Published: 25-09-2025

Abstract: The emergence of cloud computing and IoT has made effective and secure cryptographic schemes

essential for sharing data online. To protect sensitive data, data owners must encrypt files before storing them online

and grant decryption rights to authorized users. A novel approach, the Key Aggregate Cryptosystem (KAC), enables

users to decode multiple pieces of data types with one single constant key size, enhancing efficiency. In this article

the Efficient Revocable & Dynamic Secure Aggregate Key Cryptosystem Approach (ERDSAKCA) is tailored for cloud

environments. This innovative strategy not only simplifies the key management through KAC but also allows for

dynamic user revocation by updating the ciphertext, ensuring revoked users cannot access new data while non-

revoked users retain access without updating their private keys. The scheme also incorporates a verification

mechanism to ensure accuracy in user revocation and ciphertext updates. Compared to existing schemes,

ERDSAKCA effectively manages user access control and user revocation and reduces the costs associated with key

management and storage. Lastly, the scheme is shown to be selectively chosen plaintext-safe under the conventional

model, offering strong protection against cryptographic attacks.

Keywords: Aggregate Key Cryptosystem, Secure Data Sharing, Semantic Security Mechanism, Dynamic Access

Control Policy, Attribute Based Encryption.

1. Introduction

Cloud computing has emerged as a

transformative model that provides flexible, scalable,

and cost-effective access to shared computing

resources. Among its core services, cloud storage offers

virtualized storage infrastructure that reduces

dependency on local hardware and facilitates seamless

data access and management across distributed

environments. With the exponential growth in data,

organizations and individuals increasingly rely on cloud-

based services to store, retrieve, and share data

efficiently. Cloud storage allows users to offload massive

data to remote servers, improving operational agility and

minimizing infrastructure costs [1, 2]. Additionally, in

multi-user settings, the ability to share content securely

and selectively is essential for collaborative applications

in fields like healthcare, education, and finance.

However, this convenience introduces critical security

concerns, especially when data owners relinquish

control to potentially untrusted cloud service providers

(CSPs) [3].

Despite the growing adoption of cloud services,

access control remains a significant challenge.

Traditional access mechanisms either rely heavily on

CSPs or involve complex cryptographic management

that is impractical at scale. Moreover, ensuring fine-

grained access control, while allowing dynamic changes

(e.g., revoking users or modifying access policies), is

particularly difficult in distributed environments, and

many existing solutions are largely static, requiring

costly re-encryption and key redistribution that can

disrupt availability of services for authorized users [4].

Recent advances in key-aggregate

cryptosystems and searchable encryption address

revocation, delegation, and verifiability to varying

degrees [5–13]. Despite these advancements, key

challenges remain unaddressed. Many existing models

lack support for simultaneous revocation, verification,

and aggregation in a scalable manner, particularly in

multi-user, multi-file cloud settings. Most schemes

continue to rely on CSPs for executing revocation and

ciphertext updates without any guarantee of verifiability

from the data owner’s side. This introduces trust issues

mailto:samee2016@gmail.com
https://doi.org/10.54392/irjmt2558
https://crossmark.crossref.org/dialog/?doi=10.54392/irjmt2558&domain=pdf&date_stamp=2025-09-25

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 122

and potential for unauthorized access. Furthermore,

frequent re-keying and re-encryption in these schemes

cause significant overhead and limit real-time

collaboration. These limitations motivate a lightweight,

verifiable, and scalable revocable KAC scheme that

ensures secure access control and efficient key

management without affecting the accessibility of data

for legitimate, non-revoked users. A structured

comparison is provided in Section 2 (Table 1) and

highlights the specific gaps that motivate this work.

This article proposes the Efficient Revocable &

Dynamic Secure Aggregate Key Cryptosystem

Approach (ERDSAKCA) with the following contributions:

 Efficient Key Management: Using KAC to

aggregate multiple private keys into a single,

constant-sized key.

 Dynamic User Revocation: Supports revocation

by updating ciphertext, ensuring revoked users

cannot access new data without requiring non-

revoked users to update keys.

 Verification Mechanism: Includes a verification

algorithm to confirm accurate revocation and

ciphertext updates.

 Security Proof: Proven semantically secure

under the Generalized Decisional Hybrid Diffie-

Hellman Exponent (DHDHE) assumption.

 Performance Evaluation: Evaluates the

performance of the proposed scheme with the

existing schemes. The analysis shows that our

scheme reduces computational and storage

costs compared to existing schemes.

The subsequent sections of the article are

structured as follows. Section 2 presents the tabular

literature review. Section 3 outlines the materials and

methods, including the system model, cryptographic

background, and construction of the proposed

ERDSAKCA scheme. Section 4 presents the

experimental results, evaluating key performance

metrics such as setup time, encryption/decryption

efficiency, revocation performance, and memory usage.

Section 5 provides a detailed discussion, comparing

ERDSAKCA with existing schemes and highlighting its

advantages. Finally, Section 6 concludes the study and

suggests potential directions for future work. Author

declarations, Data Availability and References are

provided at the end of the manuscript.

2. Literature Review

To situate ERDSAKCA within current research,

Table 1 summarizes closely related KAC/KASE and

revocation oriented schemes relevant to multi-user,

multi-file cloud data sharing.

3. Materials and Methods

This section describes the foundational

concepts and cryptographic mechanisms employed in

the development of the proposed ERDSAKCA scheme.

The materials include the mathematical assumptions,

group structures, and cryptographic primitives used to

construct the key-aggregate framework. The methods

outline the setup of the system, key generation,

encryption and decryption processes, user revocation

strategy, and the integrated verification mechanism.

These components collectively enable secure, scalable,

and flexible data sharing in a multi-user cloud

environment.

3.1 Basic Preliminaries

This section, introduces the foundational

concepts and definitions related to KAC and its semantic

security, along with complexity assumption called the

Generalized Decisional n-Hybrid Diffie-Hellman

Exponent (Generalized DHDHE).

3.1.1 Key Aggregate Cryptosystem (KAC)

The KAC, a cryptographic framework for secure

data sharing with fine-grained access control comprises

the following six randomized algorithms [14]:

1. The Setup function initializes the system with

public parameters PK and a secret parameter t,

which is only accessible to authorized data

owners.

2. The Keygen function outputs the public and

master-secret key pair (PK = N̂p, msk = N̂).

3. The Encrypt function takes three parameters: a

public key PK, a ciphertext class i, and a

message m. It returns the class i ciphertext C

corresponding to message m.

4. The UserRevoc function manages user access

by taking msk and a subset of ciphertext classes

S, computing access control parameters and an

aggregate key KS.

5. The Access Control and Key Distribution

delivers the aggregate key KS and access

control parameter U to users with appropriate

access rights through a secure channel.

6. The Decryption function decrypts the ciphertext

C for specific class i using aggregate key KS and

access control parameter U, and produces the

decrypted message m.

3.1.2 Keeping KAC Secure Semantically

The semantic security of a key-aggregate

encoding system in opposition to an adversary is defined

through the interaction between the attack algorithm A

and the challenger algorithm B.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 123

Table 1. Summary of related work

Ref Core idea Revocation
Aggregation /

Key Size
Verification

Scope

Gaps Addressed by

ERDSAKCA

[5]

Blockchain-based

revocable KASE for

group sharing (IIoT)

Yes

(non-interactive)

Aggregate

search keys (not

general KAC)

Blockchain-

assisted

verification

Search

Search-only focus,
blockchain complexity/
latency; R
DSAKCA targets file

sharing with lightweight

verification

[6]

KAC with user

revocation for

selective groups

Yes

(ciphertext

updates)

Constant-size

ciphertexts

No explicit

CSP-update

check

Files

Updates may affect

non‑revoked users;

ERDSAKCA confines

impact and adds verifiability

[7]

Key-aggregate

proxy re-encryption

(KAPRE)

Yes (via re-

encryption)

Aggregation via

PRE

Not

emphasized
Files

Re-encryption cost on

revocation;

ERDSAKCA avoids per-

revocation re-encryption

burden

[8]

Verifiable data

sharing in dynamic

multi-owner

Not core focus
Not

key‑aggregate

Yes (verifiable

sharing)
Files

No lightweight aggregation;

ERDSAKCA integrates

aggregation and verification

[9] Multi-owner KASE
Partial

(search‑oriented)

Search-key

aggregation
Not primary Search

Search-only; ERDSAKCA

supports general file

sharing and dynamic

revocation

[10]

Revocable

online/offline KASE

(reduced online

cost)

Yes

(search context)

Search-key

aggregation
Not primary Search

Search‑specific;

ERDSAKCA generalizes to

files and adds

ciphertext‑update

verification

[11]

KAASE (Authorized

searchable

encryption with

multi-key)

Yes

(search context)

Aggregate/

authorized

search keys

Not primary Search

Preprint and search‑centric;

ERDSAKCA covers

multi‑file access and

verification

[12]

Key‑aggregate

authentication

cryptosystem

Not core
Aggregate

authentication

No

CSP‑update

check

Files

No verifiable revocation

updates;

ERDSAKCA includes

verification

[13]

Identity Based

conditional PRE

with ciphertext

evolution

Yes

(Via evolution)

Delegation

focused
Not primary Files

Key-management

complexity;

ERDSAKCA keeps

constant-size aggregates

with simple updates

[14]

KAC‑based access

control for flexible

sharing

Not native;

achievable with

KAC variants.

Constant‑size

aggregates
Not primary Files

No built‑in verification;

ERDSAKCA integrates

verification and dynamic

updates

[15]
KASE foundations &

implementation

Search-token

revocation only

(not general file

access)

Search-key

aggregation

Proofs for

search result

correctness;

not CSP

update

checks.

Search

Limited to search;

ERDSAKCA targets

general file ciphertexts

[18]
Efficient verifiable

KASE

Revocable

(search)

Search-key

aggregation

Yes

(for search)
Search

Verification tied to search;

ERDSAKCA verifies file

ciphertext updates

[19]
KASE under

multi‑owner setting

Partial

(search)

Search-key

aggregation
Not primary Search

Multi‑owner search;

ERDSAKCA supports

multi‑owner/multi‑file and

CSP‑side checks

[20]

BTG-RKASE with

fine-grained multi-

delegation "break-

the-glass"

Yes

(search)

Search-key

aggregation
Not primary Search

Emergency‑only niche;

ERDSAKCA generalizes

revocation beyond

emergencies

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 124

The game advances through the following levels

[15]:

1. The adversary A starts by choosing a subset of

the ciphertext classes S ⊆ {1, 2, ..., n} that it

intends to attack. This set is fixed before seeing

any public parameters, aligning with a selective

security model.

2. The challenger B, in response, initiates the

Setup-i algorithm for each i ∈ S, which involves

generating the public parameters and public key

PKᵢ, along with access control parameter U.

These values are revealed to the adversary,

while the corresponding msk remains

confidential.

3. For each i ∈ S, the challenger also generates

and provides the adversary with the aggregate

decryption key K_S for all ciphertext classes not

in S, ensuring the adversary has legitimate

access to non-targeted classes.

4. In the Challenge-i phase, the challenger

encrypts one of two challenge messages

chosen by the adversary for each class i ∈ S,

and the adversary must guess which message

was encrypted.

In this security game, the adversary A begins by

selecting a subset S ⊆ {1, 2, ..., n} of ciphertext classes

it intends to attack. This choice is made before A

observes any system parameters or public keys,

ensuring a selective security model. The challenger B

then executes the Setup algorithm to generate the

system parameters, public key PK, and access control

parameter U, which are provided to A. Additionally, B

generates and gives A the aggregate decryption key Ks

for all ciphertext classes not in S, granting legitimate

access to those. For each i ∈ S, B encrypts a randomly

chosen message based on a challenge bit, and A

attempts to guess the bit. The adversary succeeds only

if it correctly distinguishes all challenge ciphertexts in S.

The scheme is semantically secure if this advantage is

negligible over random guessing.

In our proposed approach, Generalized DHDHE

[16] assumption is used to prove security because it

better aligns with the needs of dynamic cloud

environments. The original DHDHE assumption is

designed for static settings with limited ciphertext-user

mappings, making it less suitable for systems with

frequent changes in user access and data classes. In

contrast, the generalized DHDHE supports polynomial-

size user and ciphertext class selections, making it more

appropriate for dynamic, multi-user data sharing

scenarios like ours. It captures the hardness of

distinguishing challenge ciphertexts under complex and

evolving key distributions, thereby enabling our

ERDSAKCA scheme to achieve secure and scalable

user revocation and access control. This broader

assumption provides stronger semantic security

guarantees against adaptive adversaries and ensures a

robust security foundation as the system scales in

complexity.

The first assumption is based on the

Generalised DHDHE, where during the setup phase, let

the parameters be 2n. Set aℓ = (2n+1) · eℓ for ℓ = 0, 1, ...,

n−1, and set aₙ = gα(2n+1) eₙ for ℓ = n, using α ∈ ℤₚ as a

random variable. Choose b₁ from ℤₚ and t₂ from ℤₚ at

random, with b = b₁ + t₂, and set a₁ = bt₁n and a₂ = bt₂n.

Identifying K = (2n)²ⁿ from a random element in G2n is the

objective, given ⟨∀i ∈ {0, 1, ..., n}, Y₁, Y₂, K⟩. For the

generalized DHDHE problem, the advantages of a

polynomial-time adversary A are described as:

AdvA
DHDHE = |Pr [A ({Xi }i∈{0,1….,n}, Y1 , Y2 K = g 2n

at2n

) = 1] −

Pr[A({Xi }i∈{0,1….,n}, Y1 , Y2 K = g2𝑛
𝑟) = 1]| (1)

The above equation 1 describes the dynamic

key generation for multi-users with polynomial user

selection. This new assumption is clearly an extension

of the DHDHE assumption, as can be seen from this.

The specific reduction of the generalized DHDHE

assumption to the DHDHE assumption can be achieved

by multiplying a1 and Y2.

3.1.3 Notation Summary

To improve clarity and support understanding of

the equations in the paper, Table 2 summarizes the key

symbols and terms used throughout the mathematical

formulations.

Table 2. Summary of Symbols and Notations

Symbol Description

P, Q Generators of bilinear groups G₁, G₂

respectively.

G₁, G₂,

GT

Cyclic groups of prime order p; GT is the

pairing result group.

e(·,·) Bilinear pairing function e : G₁ × G₂ → GT.

α, t, r Random scalars from ℤₚ.

A, Â Number of logical data/user blocks.

B Block size for data classes and users.

n = A × B Total number of data classes.

m = Â × B Total number of users.

PK, msk Public key and master secret key.

Bsk Broadcast secret key.

PKa
i Public key components for attributes.

γₐ¹, γₐ² Secret exponents

Cᵢ Ciphertext tuple (C₀, C₁, C₂, C₃).

S, S* Sets of data classes and authorized user

indices.

Ks Aggregate key for data class subset S.

K(S, S*) Broadcast key for users S̄.

dᵢʳ User's private key.

aSa, bSa Summations used in key derivation.

Xᵢ, Y₁, Y₂ Public values in the DHDHE game.

AdvA
DHDHE Adversary’s advantage in distinguishing

ciphertexts.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 125

3.2 Process of Dynamic & Revocable

Collaborative Key Sharing

This section describes an approach to dynamic

key aggregate storage presuming n ciphertext classes

with multiuser data sharing. While the size of the public

parameters grows linearly with the number of ciphertext

classes, our scheme guarantees that the ciphertext and

aggregate key remain constant in size. Users’ access

rights can be dynamically revoked using the suggested

scheme, all without requiring extensive changes to the

system parameters. Along with the proposal, a security

proof of concept is also offered. The use of the user

revocation mechanism in KAC requires revocable key-

aggregate encryption, as outsourced users in the cloud

exhibit the characteristic of perpetual change.

When a user’s credentials expire, they can have

their access revoked using the Aggregate Dynamic &

Revocable Key Cryptosystem (ADRKC), an

improvement on key aggregate cryptosystems. Setup,

KeyGen, Encrypt, UserRevoc, Update, Decrypt, and

Verify are the seven polynomial-time algorithms that

make up the dynamic and revocable key-aggregate

encryption scheme [16, 17]. Their definitions are as

follows:

1. The first input to the Setup algorithm is the

maximum quantity of files n and the protection

factor 1λ. It returns Params, the public

parameter.

2. A Public Key (PK) and a master secret key (msk)

are produced by a key generation algorithm by

taking Params as input.

3. Take the PK, an index i representing the file, a

message m, and the Params as inputs to the

encryption algorithm. It generates a ciphertext

C.

4. The UserRevoc algorithm accepts the msk, a set

S of indices that correspond to various files, the

user’s identity uid, and the Params as input.

Users’ private key SK is outputted.

5. The update algorithm accepts the following

parameters: a ciphertext C, a user revocation

set R, and the Params. The result is a modified

ciphertext a.

6. The following parameters are passed to the

decryption algorithm: the cipher text C, the user

private key SK, the set S, an index i representing

the cipher text C, the user revocation set R, and

the Params. Either the result u of 1 is output if (i

∈ S) ∧ (uid /∈ R).

7. The Verify algorithm accepts a cipher text C, an

updated cipher text a, a PK, and Params as the

input. If the revocation has been executed

honestly and the cipher text has been updated

correctly, the cloud server will output 1.

Otherwise, it will output 0.

Figure 1 depicts the model developed for use

with the ADRKC in a cloud setting. There are three parts

to it: the user, the owner, and the cloud service provider.

In order to obtain the system parameters, data

owner Alice runs the setup algorithm. Then, using a

revocable key aggregate encryption system, several

files u1, u2, .. can be shared with other people over the

cloud server.

After that, Alice secretly stored msk and used

KeyGen (params) to generate a random public/master

secret key-pair (PK, msk).

Afterward, by running Encrypt (PK, i, R, m,

params) on the cloud server, Alice and anyone else who

helped Alice can upload the encrypted files. Once Alice

decides to share multiple files with Bob, Alice will run the

UserRevoc algorithm (msk, uid, S, params) to generate

SK for Bob based on the indices of authorized files and

the user’s identity. Due to the fixed size of SK, Alice can

easily send it to Bob through a secure channel at a low

communication cost. The user revocation list R will be

sent to CSP by Alice whenever she wishes to remove

users. In order to update the corresponding ciphertext,

CSP then invokes the algorithm Update (PK, R, a, and

params). Bob’s revoked access must not be disabled

before downloading the new ciphertext from the cloud

server and using the private key to run the Decrypt

algorithm (O, SK, T, i, R, params) to extract the actual

text. If the user’s access has been cancelled, like David’s

in Figure 1, he will lose access to the files because he

cannot decipher the updated ciphertext. At last, by using

the algorithm Verify (a, O, params), Alice can confirm

that the user revocation is successfully completed and

check the changed ciphertext. Such verifiability in

outsourced settings is similarly emphasized in [18],

though the model lacks integration with dynamic

ciphertext updates.

Dynamic access control: The ability to

dynamically update user access to a set of ciphertexts is

a key component of the proposed scheme. To remove a

user’s access to a set of ciphertext classes after they

have been granted an aggregate key by the data owner

in KAC, the owner must first change the master secret

key. However, it is expensive and perhaps problematic

to change the msk each time a user’s ciphertext class

access rights need to be updated. Our plan, however,

addresses this issue through enabling the owner of data

to instantly modify permissions of user.

To accomplish this, in the proposed scheme, the

parameter U = tP is not included in the ciphertext but

rather in the aggregate key. Any encrypted ciphertext

class in subset S can be decrypted by the user if they

have the correct value of U. Imagine for a moment that

the data owner wants to change who can access subset

S.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 126

Figure 1. General Processes of Dynamic and Revocable Multi Data Sharing with Aggregate Key Cryptosystem.

She has the option to reencrypt all the

ciphertexts in that class with a new random element t′ ∈

Zq. Then, she can only grant access to the users she

wants by providing them with the updated dynamic

access parameter U′ = t′P. If you use the same t for

encryption and decryption, the decoded value only will

provide the exact information m. In contrast, some earlier

techniques could not control access privileges

effectively, as they relied solely on the random

parameter embedded in the ciphertext. This represents

a significant difference from the proposed method.

Moreover, the parameter U remains constant in size and

is transmitted only when updated, ensuring that system

performance remains largely unaffected.

3.3 Construction of Efficient Revocable &

Dynamic Secure Aggregate Key Cryptosystem

Approach (ERDSAKCA)

This section describes the construction of the

proposed Efficient, Revocable, and Dynamic Secure

Aggregate Key-based Cryptosystem for Access control

(ERDSAKCA) encryption scheme, designed for secure,

efficient, and revocable multiuser file sharing in cloud

environments. The scheme outlines the implemented

processes, security level performance, multiuser

revocation, and dynamic access control in data sharing.

3.3.1 Process

The implemented process as follows:

1) Setup of Cloud Environment: Pick α ∈ Zq at random

using SetUpB (1λ, n, m). The system parameter

should be output shown in Algorithm 1 as The

parameters are set to include the following: P, Q, Y

P, α, B, Y Q, α,BC. Throw out α. Find A as ⌊n/B⌋ and

A′ as ⌊m/B⌋.

Algorithm 1 Algorithm process of cloud setup
environment

1) Create a bilinear map group system B =

2) (p, G, GT, e (・, ・)).

3) Create a set of public parameters called PubK

with the following definition: g = gol ∈ G for every

l ∈ {1, 2, . . . , n, n + 2, . . . , 2n}.

4) Choose a collision-resistant hash function H1:

{0, 1} × {0, 1} → {0, 1}∗∗ that is one-way.

5) H2: {0, 1} × {0, 1}∗∗ → is a collision-resistant
hash function that must be monotone minimum,
and set SP ←

6) (B, PubK, H1, H2).

7) KS ← γ {0, 1} | Γ = 0.

2) Gen of User Key: Probably select the attributes: γ1, .

. . , γA ∈ Zq, & γ1′ , . . . , γA′ ∈ Zq. msk1 = (γ1, . . . ,

γA) & msk2 = (γ1′ , . . . , γA′). After that, specify for 1

≤ a ≤ A and 1 ≤ a′ ≤ A, as shown in equation 2 & 3.

𝑃𝐾1
𝑎 = 𝛾1

𝑎𝑃. 𝑃𝐾2
𝑎 = 𝛾1

𝑎𝑄

 𝑃𝐾3
𝑎 = 𝛾2

𝑎𝑃. 𝑃𝐾4
𝑎 = 𝛾2

𝑎𝑄 (2)

𝑃𝐾1 = (𝑃𝐾1
1, … , 𝑃𝐾1

𝐴)

𝑃𝐾2 = (𝑃𝐾2
1, … , 𝑃𝐾2

𝐴)

𝑃𝐾3 = (𝑃𝐾3
1, … , 𝑃𝐾3

𝐴) (3)

As msk = (msk1, msk2), print the master secret

key, and as PK = (PK1, PK2, PK3, PK4), print the public

key. Uniformly at random choose the secret broadcast

key bsk = γ3 from Zq and provide it as additional output.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 127

3) Encrypt of Owner Data: Parameterized function t

(PK, i, M): find a = ⌊i/B⌋ and b is calculated as (i mod

B) + 1. Consider a-th element of PK2 as PKa2.

Algorithm 2 Encryption of Files for Secure Data
Sharing in the Cloud

1) Choose a value t from the set Zp.
2) If the value l is from the set {1, 2, . . . , }, then

3) C11 ← gt.

4) C12 ← (v. g) the fifth time: δl = (C11, C12).

5) C1KW1 ← ϕwi, jϵ ← for all integers from 1 to x in

6.

6) For every i and j in the set ← KW, do the

following:

7) C1KWi ← H2(wi, j) ・ e (gl, gn). Eleventh: Cl ←

The equation KW = C13 ← (C1KW1, {C1KWi})

where i ∈ {x + 1, x + 2, . . . , y} and wi, j ∈← KW

8) e ← KW

9) C1 = (C11, C12, C13, C14)
10) The owner of the data keeps the ciphertext C1

on the server in the cloud.

Select an element t from the set Zq at random

and print out the partial cipher text C0 as shown in

equation 4.

𝐶 = (𝐶0, 𝐶1, 𝐶2, 𝐶3) = (𝑡𝑄, 𝑡𝑃𝐾2
𝑎, 𝑡(𝑃𝐾2

𝑎 + 𝑄), 𝑀 ⋅

𝑒(𝑃𝑏 , 𝑡𝑄)) (4)

Conversion of cipher text from random user

attributes using the above equation.

Enter the partially encrypted cipher text C0 = (c0,

c1, c2, c3), the msk = (msk1, msk2), and the bsk as

arguments to the System Encrypt function shown in

algorithm 2.

Here, the class id i is the extra piece of data that

is needed.

With a = ⌊i/B⌋, we can denote the a-th

component of msk1 as msk1a.

Show the decipher text C′ in its final form as

specified in equation 5.

𝐶′ = (𝐶0
′ , 𝐶1

′, 𝐶2
′ , 𝐶3

′)

= (𝑐0, 𝑐1
′ − (𝑏𝑠𝑘 ⋅ 𝑚𝑠𝑘1𝑎)𝑄, 𝑐2, 𝑐3)

= (𝑡𝑄, (𝑡 − 𝑏𝑠𝑘)𝑃𝐾2
𝑎, 𝑡(𝑃𝐾2

𝑎 + 𝑄𝑏), 𝑀. 𝑒(𝑃𝑏 , 𝑡𝑄1)) (5)

This is formation of decrypted text with cipher

text from equation 4.

4) Password Generator (param, msk, ˆi): The user’s

private key, denoted as d′, should be displayed as

shown in equation 6.

𝑑𝑖
′ = 𝑚𝑠𝑘2𝑏′

𝑎′
 𝑃 = 𝛾2𝑏′

𝑎′
 (6)

This is the same setting d′ to a′BPKA 3 in an indirect

way.

5) User Revoc of Key (param, msk, S): Suppose msk

is equal to (msk1, . . . , mskA). The set Sa is defined

as {i mod B + 1|i ∈ S, di/Be = a} for the part of indices

of the class S where 1 ≤ a ≤ A.

Next, calculate for all values of a from 1 to A,

evaluate the values from revocable keys for users as

shown in equation 7.

𝐾𝑆
𝑎 = 𝑚𝑠𝑘1

𝑎 ∑ 𝑃𝐵+1−𝑗𝑗∈𝑆𝑎
= 𝛾1

𝑎 ∑ 𝑃𝐵+1−𝑗𝑗∈𝑆𝑎
 (7)

Output of the final attributes sequences as

follows:

𝐾𝑆 = (𝐾𝑆
1, … , 𝐾𝑆

𝐴) (8)

6) Multi-User Broadcast Secure Data Share (param,

KS, S∗, PK, bsk): The following is a broadcast to all

users in S∗ of the aggregate key KS = (K1 S,

.….KAS). Define S∗ as the set of user ids where 1 ≤

a∗ ≤ A∗ and for each i in S∗. define a∗ as the product

of {i mod B + 1|i ∈ S, di/Be = a}.

Pick t∗ at random from the set Gq and set it for

1 ≤ a∗ ≤A∗.

𝑏𝑠𝑎
= ∑ 𝑄𝐵+1−𝑗𝑗∈𝑆𝑎

 (9)

Based on the above sequences (equation 9),

generated output collaborative key as shown in

equations 10 & 11.

𝐾(𝑆 ,𝑆∗) = (𝑡𝑄, 𝐾1, 𝐾2) (10)

Here

𝐾1 = (𝑡(𝑃𝐾1
4 + 𝑏𝑆1

), … , 𝑡(𝑃𝐾1
4 + 𝑏𝑆𝐴

))

𝐾2 = ({ 𝑒(𝑃𝐵 , 𝑡𝑄1) ⋅ 𝑒(𝐾𝑠
𝑎, 𝑄)𝑏𝑠𝑘}1 ≤𝑎 ≤𝐴) (11)

Note that K (S, S∗) now comprises of O (A + A∗)

group elements.

Algorithm 3. Decryption of Files for Secure Data
Sharing in the Cloud

1) If i is a member of the set S, then do the following:

2) If pub ∈ S is true, then

3) ŷ ← Sig [1 ∥ i] [eSig′].

4) R1 ← e(Tr1 ・ pub−1, C1)/e(pub−2, C2).

5) e(C1KWI, Tr2) with i × x + y and y′.
6) Hii ← C1KWI [e(C4, Tr2)e(pub−2, C12)e(pub−4,

C11)] where Tr0, pub−1, and pub−3 are the inputs
and C1 is the output.

7) The set pub i ∈ Sig [n + 1 − j] is defined as ŷ ∈ S,
where j = lg [n + 1 − j].

8) Ri ← 1 if (Hi > Tri1) and (Hi < Tri2).
9) Include Hii in the Hash Value List (HVL):
10) Ri ← 0 “Ri equals zero.”
11) For every i in the set f × 1 × 2…. y′, execute the

following:

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 128

12) If RiA = 1, then add i to the Search Result List
(SRL).

13) The return failure case.

7) Decrypt of Keys: The function t (Param, C, K(S, S′),

i′, di′, S, S′) is defined as follows: The output will be

zero if either i′ is an element of S or i′ is an element

of S′. If not, then multiply di′/Be by i′ mod B + 1 in

algorithm 3, and then set:

𝑎𝑆𝑎 = ∑ 𝑃𝑏+1−𝑗+𝑏𝑗∈𝑆𝑎 \𝛾𝑏 , (12)

𝑏𝑆𝑎 = ∑ 𝑃𝑏+1−𝑗𝑗∈𝑆𝑎 , (13)

The set C can be defined as (c0, c1, c2, c3) and

𝐾{(𝑆,𝑆′)} = (𝑘{0}, (𝑘{1}, … , 𝑘{4}), (𝑘{1}, … , 𝑘{4})
{2}

) (14)

Back to the decrypted message as follows:

𝑀 = 𝐶3𝐾2.
𝑒(𝑏𝑆𝑎 𝑐1) 𝑒 (𝑎𝑆𝑎 𝑐0)

𝑒(𝑏𝑆𝑎 𝑐2)
 .

𝑒 (𝑑𝑖 + 𝑎𝑆𝑎 𝑘0)

𝑒(𝑃𝑏+1𝑘1)
 (15)

The framework mentioned earlier is designed for

use by a sole owner of the data. To accommodate m0

owners of data, m0 such setups must be initiated similar

to the multi-owner KASE approach described in [19].

Proof of validity for this construction can be skipped, as

it mirrors the construction of fundamental KAC.

The following theorem addresses the non-

adaptive CPA security of the generalized extended KAC

construction. Let G1 and G2 be two subgroups of order q

of a bilinear elliptic curve. The broadened and enhanced

KAC, which handles n data classes and m users, is (τ,

B)-CPA secure if the non-symmetric decision (τ, B, B)-

BDHE assumption holds in (G1, G2) for any positive

integer triple (n, m, B) where B ≤ min (n, m).

Additionally, the extended KAC construction can

be further developed to achieve Chosen Ciphertext

Attack (CCA) security using appropriate techniques.

3.3.2 Security Level Performance

An essential part of the system’s performance is

the selection of A, A0, and B. The construction makes it

very evident that there is a constant number of group

elements that make up the ciphertext. There are O(B)

group elements in the public parameter and O(A + A′) in

the public key PK and the broadcast aggregate key K(S,

S′). So, for uses that necessitate minimal overhead

aggregate keys, a smaller value of B is beneficial. The

ordering notation for the storage complexities of

generalized methods is summarized in Table 3. The

space complexity of any group member in G1, G2, and

GT is assumed to be O(n1), O(n2), and O(nT),

respectively.

Table 3. Complexity of Space with Processing of
Key Aggregate

Parameter Complexity of the Sequence

Param O(B(n1 + n2))

msk O(A + A1log q)

PK O(An1+An2)

bsk O(log q)

c O(n1+n2)

K(S,S′) O((A+1)n2+An1)

3.3.3 Multi User Revocation & Dynamic Access in

Data Sharing

The foundation of our structure is a component

that allows B data classes and users to function. This

allows the system to manage n = A×B data classes and

m = Â×B data users. The system is designed to plan and

execute A × Â instances of this component

simultaneously.

Although each building block uses its own

private and public key components, they all share the

same set of public parameters. The construction

maintains constant ciphertext overhead while balancing

the size of the public parameters with the aggregate key

and public key sizes.

Adding and removing users from an existing list

is especially important in multi-user contexts, where both

the total number of users and their individual

permissions to access resources are subject to ongoing

change [20], including emergency access scenarios

using break-the-glass delegation. The extended KAC

construction seamlessly handles the addition of new

users as shown in the Figure 2. To add a new user,

simply generate an updated key for each newly joined

user. From that point onward, all broadcast operations of

the aggregate key will account for the access rights of

both recent and existing users.

Notably, the system does not need to recreate a

basic size-B block in the enlarged framework to

accommodate new users. Adding new users only

increases the value of parameter A, which is equivalent

to creating additional instances of the same basic

building block. Consequently, there is no need to modify

the existing owner/user keys or the public parameters.

This compatibility with broadcast encryption ensures the

system can handle an increased number of users

without complications.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 129

Figure 2. Extended KAC with User Management, Revocation and Traitor Tracing Features

User revocation, a fundamental feature of

broadcast encryption systems, is also achieved at no

additional cost. For instance, if a data owner decides that

a specific user should no longer access any documents

uploaded to the cloud, they can instruct the system to

exclude that user’s identity from future broadcast

operations. This effectively prevents the revoked user

from accessing aggregate keys associated with any new

data the owner uploads to the cloud. The corresponding

security guarantee comes naturally from the collision

resistance property of the extended KAC construction,

which is not incurable at all. Specifically, the collusion

resistance property ensures that a revoked user’s prior

knowledge of aggregate Keys do not compromise

access to future documents, as their access rights do not

cover the new indexes.

While revoked users naturally retain access to

previously existing documents (which they could have

downloaded and saved prior to revocation), revoking

access to such documents is often unnecessary.

However, if the data owner wishes to update an existing

document and prevent a revoked user from accessing it,

they can assign a different index to the updated

document.

Revocation is commonly employed when rogue

or compromised users threaten the system’s security.

Tracing such users, however, is more complex and

requires traitor-tracing systems. Consider a scenario as

shown in Figure 2 in which the data owner shares an

aggregate key for a specific subset S of plaintext data

with a group of authorized users Ŝ. A potential threat

arises if a malicious actor compromises one of the users

in the receiver set Ŝ, obtains their secret key, and

develops a decoder that unauthorized parties can use to

access the plaintext.

To address this, the data owner can employ a

tracing technique that uses a publicly available malicious

decryptor to identify at least one compromised user

index and revoke their access. A traitor-tracing system

is valuable in this context. Although this study does not

aim to provide a comprehensive description of the

integration of the extended KAC framework with a traitor

tracking scheme, it should be noted that the extended

KAC framework could potentially leverage several

proposals from the literature that have explored

integrating traitor tracking with broadcast encryption,

with varying degrees of success.

4. Results

The performance of the proposed ERDSAKCA

scheme is evaluated against two closely related and

widely cited schemes, Key-Aggregation Authorized

Searchable Encryption Scheme (KAASE) [11] and Multi-

Owner Key-Aggregate Searchable Encryption Scheme

(MOKASE) [19], which represent the state-of-the-art in

key-aggregate searchable encryption with revocation

and multi-user capabilities. The evaluation focuses on

key metrics, including setup time, key generation,

encryption, decryption, user revocation, trapdoor

generation, and memory utilization, as illustrated in

Figures 3 through 8.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 130

Figure 3. Performance evaluation of cloud setup environment

Figure 4. Key generation time based on different file attributes

Figure 5. Encryption time to explore files to cloud

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 131

Figure 6. Performance of data extraction / decrypted data with different files attributes

Figure 7. Performance of proposed approach in term of user revocation

For the cloud environment setup, the

implementation was carried out using the latest version

of CloudSim, with Java and NetBeans as the

development tools. Experiments were conducted with

document counts ranging from 10 to 100 in increments

of 10, each document limited to 10 KB and containing

randomly selected words from a dictionary.

Cloud Setup Environment: Figure 3 shows the

cloud setup time for ERDSAKCA, MOKASE, and

KAASE as the number of documents increases.

ERDSAKCA consistently exhibits the lowest setup time,

ranging from approximately 3 ms to 6 ms, compared to

MOKASE (4 ms to 9 ms) and KAASE (4 ms to 9 ms).

The setup time for ERDSAKCA grows linearly with the

number of documents but remains significantly lower,

demonstrating its efficiency in initializing the cloud

environment.

Key Generation Based on Different Attributes:

As depicted in Figure 4, the key generation time for

ERDSAKCA remains nearly constant, fluctuating

between 10 ms and 14 ms across varying document

counts. In contrast, MOKASE and KAASE show slightly

higher times, ranging from 14 ms to 20 ms and 18 ms to

25 ms, respectively. This near-constant performance of

ERDSAKCA highlights its scalability in generating keys,

even as the number of attributes increases.

Encryption Time to Explore Files in the Cloud:

Figure 5 illustrates the encryption time for ERDSAKCA,

MOKASE, and KAASE.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 132

Figure 8. Performance of data size memory utilization for processing secure data in cloud

Table 4. Comparative Summary of ERDSAKCA with MOKASE and KAASE

Feature MOKASE KAASE ERDSAKCA (Proposed)

Key Management
Single key per

owner

Attribute-based, fixed-

size

Constant-size key; aggregate

key broadcast

Dynamic User Revocation
Limited, no

ciphertext update

Moderate, requires

partial updates

Efficient, revokes via ciphertext

update

Verification Mechanism Not integrated Basic hash-based
Integrated ciphertext update

verification

Ciphertext Size Variable Constant Constant

Trapdoor Generation Supported Supported Supported

Semantic Security BDHE-based
ABE with trapdoor

protection
Generalized DHDHE-based

Multi-User Multi-File

Support
Yes Limited Fully supported

Scalable Cloud

Deployment
Partial Limited Fully scalable and lightweight

Setup Time 4–9 ms 4–9 ms 3–6 ms

Key Generation Time 14-20 ms 18-25 ms 10-14 ms

Encryption Time 13–24 ms 19–26 ms 9-13 ms

Decryption Time 8-12 ms 9-16 ms 6-9 ms

Memory Usage 800-1400 KB 750-900 KB 400-800KB

User Revocation Time High Moderate Low (6–9 ms)

ERDSAKCA maintains a lower encryption time,

averaging between 9 ms and 13 ms, compared to

MOKASE (13 ms to 24 ms) and KAASE (19 ms to 26

ms).

The linear increase in encryption time with the

number of documents is evident across all schemes, but

ERDSAKCA’s use of a single pairing operation results in

a reduced computational overhead compared to the

pairing-heavy approaches of MOKASE and KAASE.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 133

Performance of Data Extraction/Decryption with

Different File Attributes: Figure 6 illustrates the

decryption performance of three schemes, ERDSAKCA,

MOKASE, and KAASE across varying numbers of

documents. ERDSAKCA consistently outperforms the

other two, maintaining the lowest and most stable

decryption times between 6-9 ms. MOKASE shows

moderate performance with decryption times ranging

from 8-12 ms, while KAASE exhibits the highest and

most fluctuating times between 9-16 ms. Overall,

ERDSAKCA demonstrates superior efficiency and

scalability, making it the most effective scheme for

handling increasing document volumes.

The graph in Figure 7 illustrates the user

revocation time (in milliseconds) for the ERDSAKCA

scheme across varying numbers of documents. The

revocation time fluctuates slightly but generally remains

within a range of 6 to 9 ms, showing no clear upward or

downward trend as the number of documents increases.

This indicates that the proposed approach maintains a

consistently low and stable revocation time, even as the

data size scales, which demonstrates its efficiency and

reliability in managing user revocation during data

sharing.

Performance of Data Size Memory Utilization for

Processing Secure Data in the Cloud: Figure 8

compares memory utilization. ERDSAKCA uses less

memory compared to MOKASE and KAASE.

To illustrate the practicality and advantages of

ERDSAKCA, a comparative summary is presented in

Table 4, highlighting key findings such as cloud setup

time, encryption time, decryption time, user revocation

time, and memory usage, along with core security,

efficiency, and system-level features relative to two

existing schemes, MOKASE and KAASE. This direct

comparison emphasizes the unique strengths of

ERDSAKCA in enabling multi-user access control,

scalable deployment, and low computational overhead.

5. Discussion

The comparative analysis presented in Table 4

clearly demonstrates that ERDSAKCA outperforms both

MOKASE and KAASE in terms of efficiency, especially

in dynamic environments with multi-user and multi-file

access control requirements.

First, ERDSAKCA offers robust dynamic

revocation by updating ciphertext alone, eliminating the

need for costly re-keying for authorized users which is

an advantage not offered in either KAASE or MOKASE.

Its constant-size aggregate key simplifies key

management complexity while reducing transmission

and storage overhead.

Second, ERDSAKCA’s encryption and

decryption times remain consistently low across all file

sizes. Unlike KAASE, which depends heavily on pairing

operations, ERDSAKCA minimizes computational load

with a single pairing operation per file, significantly

improving processing efficiency.

Third, the built-in verification mechanism

ensures that ciphertext updates and revocation

operations are executed honestly, which is an essential

security enhancement absent in earlier models.

In terms of scalability, ERDSAKCA’s lightweight

design allows smooth integration with large-scale cloud

systems. Its lower memory consumption relative to

MOKASE and KAASE makes it highly suitable for

resource constrained environments.

The performance advantages observed in

ERDSAKCA, including reduced encryption and

decryption times, efficient user revocation through

ciphertext updates, and lower memory usage, align with

recent research developments in revocable and

aggregate key cryptographic systems [5, 6]. However,

ERDSAKCA distinguishes itself by integrating a built-in

ciphertext verification mechanism, addressing notable

security gaps highlighted in recent studies [7, 12].

Furthermore, unlike existing models such as [11, 19],

ERDSAKCA consistently maintains stable key-

generation and setup times across increasing document

sizes, underscoring its practicality and scalability in

dynamic multi-user cloud environments.

6. Conclusion

This article proposes the Efficient Revocable

Dynamic Secure Aggregate Key Cryptosystem

Approach (ERDSAKCA), which effectively implements

key aggregation and user access control in a cloud

environment based on a dynamic and revocable key-

aggregate cryptosystem. The proposed method updates

the ciphertext on cloud servers, enabling revocation of

user permissions without requiring legitimate users to

change their secret keys. In addition, an extended

system is introduced to accommodate the cloud

environment, where the number of files is large and

grows rapidly. A verification mechanism ensures that

user revocation is executed correctly. Furthermore, the

fundamental Key-Aggregate Cryptosystem (KAC)

architecture is shown to be easily generalizable and

expandable, allowing secure broadcasting of the

aggregate key to multiple users in a real-world data-

sharing scenario. This lays the foundation for developing

a flexible and scalable public-key based system for

online data exchange in the cloud. According to the

performance evaluation, the proposed approach

achieves efficient user access control while significantly

reducing transmission and storage costs compared to

existing schemes. An additional enhancement of the

proposed approach is the provision of identity-based

privacy, addressing multi-user data conflicts in cloud

computing data sharing.

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 134

References

[1] A.Q. Khan, M. Matskin, R. Prodan, C. Bussler, D.
Roman, A. Soylu, Cloud storage cost: a
taxonomy and survey. World Wide Web, 27(36),
(2024) 1–33. https://doi.org/10.1007/s11280-
024-01273-4

[2] P. Aryan, S.D. Shetty, Designing a secure,
scalable, and cost-effective cloud storage
solution: A novel approach to data management
using NextCloud. TrueNAS, and QEMU/KVM,
International Conference on Computational
Intelligence and Network Systems (CINS), IEEE,
United Arab Emirates.
https://doi.org/10.1109/CINS63881.2024.108644
01

[3] E. Alhelali, K.M. Ramokapane, J. Such, Multiuser
privacy and security conflicts in the cloud. CHI
'23: Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, (2023) 1-
6. https://doi.org/10.1145/3544548.3581307

[4] L. Golightly, P. Modesti, R. Garcia, V. Chang,
Securing distributed systems: A survey on
access control techniques for cloud, blockchain,
IoT and SDN. Cyber Security and Applications, 1,
(2023) 100015.
https://doi.org/10.1016/j.csa.2023.100015

[5] K. Zhang, X. Hu, J. Zhao, L. Wei, J. Ning,
Blockchain-based revocable key-aggregate
searchable encryption for group data sharing in
cloud-assisted Industrial IoT, IEEE Internet of
Things Journal, 12(11), (2025) 16899–16911.
https://doi.org/10.1109/JIOT.2025.3534837

[6] J. Liu, J. Qin, X. Zhang, H. Wang, Efficient key-
aggregate cryptosystem with user revocation for
selective group data sharing in cloud storage,
IEEE Transactions on Knowledge and Data
Engineering, IEEE, 36(11), (2024) 6042–6055.
https://doi.org/10.1109/TKDE.2024.3397721

[7] G. Pareek, B.R. Purushothama, KAPRE: Key-
aggregate proxy re-encryption for secure and
flexible data sharing in cloud storage. Journal of
Information Security and Applications, 63, (2021)
103009.
https://doi.org/10.1016/j.jisa.2021.103009

[8] J. Zhao, Q. Su, Verifiable data sharing scheme
for dynamic multi-owner setting. arXiv preprint,
arXiv:2308.00239 (2023) 113-125.
https://doi.org/10.5121/csit.2023.131309

[9] M. Padhya, D.C. Jinwala, MULKASE: A novel
approach for keyaggregate searchable
encryption for multi-owner data. Frontiers of
Information Technology & Electronic
Engineering, 20(12), (2019) 1717–1748.
https://doi.org/10.1631/FITEE.1800192

[10] M. Padhya, D.C. Jinwala, R-OO-KASE:
Revocable online/offline key aggregate
searchable encryption. Data Science and
Engineering, 5(4), (2020) 391–418.

https://doi.org/10.1007/s41019-020-00136-y

[11] H. Wang, KAASE: Key-aggregation authorized
searchable encryption scheme for multi-key
encryption data sharing, SSRN preprint (2022).
https://dx.doi.org/10.2139/ssrn.4063519

[12] K. Alimohammadi, M. Bayat, H.H. Javadi, A
secure key-aggregate authentication
cryptosystem for data sharing in dynamic cloud
storage. Multimedia Tools and Applications,
79(3), (2020) 2855–2872.
https://doi.org/10.1007/s11042-019-08292-8

[13] S. Yao, R.V. Dayot, H.J. Kim, I.H. Ra, A novel
revocable and identity-based conditional proxy
re-encryption scheme with ciphertext evolution
for secure cloud data sharing. IEEE Access,
9(2021) 42801–42816.
https://doi.org/10.1109/ACCESS.2021.3064863

[14] J. Liu, J. Qin, W. Wang, L. Mei, H. Wang, Key-
aggregate based access control encryption for
flexible cloud data sharing. Computer Standards
& Interfaces, 88, (2024) 103800.
https://doi.org/10.1016/j.csi.2023.103800

[15] M. Kamimura, N. Yanai, S. Okamura, J.P. Cruz,
Key-aggregate searchable encryption revisited:
formal foundations for cloud applications and
their implementation. IEEE Access, 8, (2020)
24153–24169.
https://doi.org/10.1109/ACCESS.2020.2967793

[16] Q. Gan, X. Wang, D. Wu, Revocable key-
aggregate cryptosystem for data sharing in cloud.
Security and Communication Networks, 2017,
(2017) 1–11.
https://doi.org/10.1155/2017/2508693

[17] S. Patranabis, Y. Shrivastava, D. Mukhopadhyay,
Dynamic key-aggregate cryptosystem on elliptic
curves for online data sharing. In International
conference on cryptology in India, Springer
International Publishing.
https://doi.org/10.1007/978-3-319-26617-6_2

[18] X. Wang, X. Cheng, Y. Xie, Efficient verifiable
key-aggregate keyword searchable encryption
for data sharing in outsourcing storage. IEEE
Access, 8, (2019) 11732-11742.
https://doi.org/10.1109/ACCESS.2019.2961169

[19] T. Li, Z. Liu, C. Jia, Z. Fu, J. Li, Key-aggregate
searchable encryption under multi-owner setting
for group data sharing in the cloud, International
Journal of Web and Grid Services, 14(1), (2018)
21–43.
https://doi.org/10.1504/IJWGS.2018.088358

[20] M. Padhya, D.C. Jinwala, (2019) BTG-RKASE:
Privacy preserving revocable key aggregate
searchable encryption with fine-grained multi-
delegation break-the-glass access control.
Proceedings of the 16th International Joint
Conference on e-Business and
Telecommunications – SECRYPT, 2, 109–124.
https://doi.org/10.5220/0007919901090124

https://doi.org/10.1007/s11280-024-01273-4
https://doi.org/10.1007/s11280-024-01273-4
https://doi.org/10.1109/CINS63881.2024.10864401
https://doi.org/10.1109/CINS63881.2024.10864401
https://doi.org/10.1145/3544548.3581307
https://doi.org/10.1016/j.csa.2023.100015
https://doi.org/10.1109/JIOT.2025.3534837
https://doi.org/10.1109/TKDE.2024.3397721
https://doi.org/10.1016/j.jisa.2021.103009
https://doi.org/10.5121/csit.2023.131309
https://doi.org/10.1631/FITEE.1800192
https://doi.org/10.1007/s41019-020-00136-y
https://dx.doi.org/10.2139/ssrn.4063519
https://doi.org/10.1007/s11042-019-08292-8
https://doi.org/10.1109/ACCESS.2021.3064863
https://doi.org/10.1016/j.csi.2023.103800
https://doi.org/10.1109/ACCESS.2020.2967793
https://doi.org/10.1155/2017/2508693
https://doi.org/10.1007/978-3-319-26617-6_2
https://doi.org/10.1109/ACCESS.2019.2961169
https://doi.org/10.1504/IJWGS.2018.088358
https://doi.org/10.5220/0007919901090124

Vol 7 Iss 5 Year 2025 Sameera Mahammad & K. Usha Rani /2025

Int. Res. J. Multidiscip. Technovation, 7(5) (2025) 121-135 | 135

Authors Contribution Statement

Sameera Mahammad: Conceptualization, Validation,

Investigation, Writing - Original Draft, Visualization. K.

Usha Rani: Supervision, Project administration,

Validation, Writing - Review & Editing. Both the authors

approved the final version of the work.

Funding

The authors declare that no funds, grants or any other

support were received during the preparation of this

manuscript.

Competing Interests

The authors declare that there are no conflicts of interest

regarding the publication of this manuscript.

Data Availability

The data supporting the findings of this study can be

obtained from the corresponding author upon

reasonable request.

Has this article screened for similarity?

Yes

About the License

© The Author(s) 2025. The text of this article is open

access and licensed under a Creative Commons

Attribution 4.0 International License.

