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Abstract: The deep learning community has increasingly focused on the critical challenges of human activity 

segmentation and detection based on sensors, which have numerous real-world applications. In most prior efforts, 

activity segmentation and recognition have been treated as separate processes, relying on pre-segmented sensor 

streams. This research proposes an unsupervised deep learning approach for Human Activity Recognition (HAR) 

that is segment-based, with an emphasis on activity continuity. The approach integrates segment-based SimCLR 

with Segment Feature Decorrelation (SDFD) and a new framework that leverages pairs of segment data for 

contrastive learning of visual representations. Furthermore, the Secretary Bird Optimization Algorithm (SBOA) and 

Channel Attention with Spatial Attention Network (CASANet) are utilized to enhance the performance of sensor-

based human activity detection. CASANet effectively extracts key features and spatial dependencies in sensor data, 

while SBOA optimizes the model for greater accuracy and generalization. Evaluations on two publicly available 

datasets—Mhealth and PAMAP2—demonstrated an average F1 score of 98%, highlighting the approach’s efficacy 

in improving activity recognition performance. 

Keywords: Secretary Bird Optimisation Algorithm, Channel Attention with Spatial Attention Network, Segmentation, 

Sensor based Human Activity Recognition, Accelerometer sensors. 

 

1. Introduction 

Human Activity Recognition (HAR) has become 

increasingly important in various real-world applications, 

including healthcare, ambient-assisted living, and 

human-computer interaction [1]. Activity segmentation 

and recognition, two critical processes in HAR, have 

traditionally been treated separately, with activity 

identification algorithms focusing on identifying actions 

from sensor data streams and segmentation algorithms 

detecting the beginning and end of activities [2]. While 

this separation has yielded meaningful results, these 

approaches often fail to address the challenges posed 

by real-world environments, such as device variability, 

noise, and overlapping activities. 

Recent advancements in sensor technology, 

such as wristbands and mobile phones, have made 

sensors compact, accurate, and portable, facilitating 

their use in HAR [3, 4]. These developments have led to 

HAR’s broad application in health monitoring, fitness, 

and home automation [5]. The widespread use of 

smartphones, in particular, has made HAR an even more 

promising area for future research [6]. However, the 

practical implementation of HAR systems still faces 

significant obstacles. One of the major challenges is 

processing the large volumes of sensor data while 
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managing their temporal aspects [7]. Furthermore, while 

HAR algorithms have achieved high accuracy in 

controlled environments, these results often degrade in 

real-world applications due to factors such as varying 

sensor placements and device orientations, as well as 

environmental noise [8-10]. Additionally, individual 

differences in physical characteristics can significantly 

impact the performance of HAR systems, making it 

difficult to generalize findings to diverse populations [11]. 

Addressing these challenges requires more 

robust HAR systems that can adapt to real-world 

variability. For instance, sensor placements can 

significantly affect the accuracy of movement detection, 

and there is ongoing debate about the optimal 

placement for HAR sensors [12-14]. Moreover, while 

supervised HAR systems require large amounts of 

labeled data, this is not always feasible due to the cost 

and time associated with data collection [15]. This has 

led to growing interest in unsupervised HAR methods 

that can learn patterns from unlabeled data. Recent 

research has focused on deep learning methods for 

automating activity recognition, with attention given to 

how different sensors—such as kinetic, inertial, visual, 

and physiological sensors-operate in tandem to optimize 

detection accuracy [16]. Advances in wireless sensor 

networks (WSNs) have further expanded HAR 

possibilities, thanks to their simplicity, low cost, and low 

power consumption [17]. 

In this study, we propose a novel unsupervised 

deep learning technique for HAR that is based on 

segmenting accelerometer data, with an emphasis on 

recognizing activity continuity. Here, "segments" refer to 

time-series data collected by sensors that capture a 

single activity. 

Key contributions are as follows: 

 We introduce a segment-based SimCLR 

framework that uses pairs of segment data to 

enhance learning, which is further improved by 

integrating Segment Feature Decorrelation 

(SDFD). 

 The Secretary Bird Optimization Algorithm 

(SBOA) is used to fine-tune the model, while the 

Channel Attention with Spatial Attention 

Network (CASANet) is employed to capture 

important features and spatial relationships in 

sensor data. 

 Our proposed architecture is evaluated on two 

publicly available datasets—PAMAP2 and 

Mhealth—which include a diverse set of 

activities. The empirical results demonstrate the 

effectiveness of the approach, achieving an 

average F1 score of 98% on both datasets. 

The remaining sections of this paper are 

structured as follows: Section 2 reviews relevant 

literature; Section 3 details the methodology; Section 4 

presents an analysis of the results; and Section 5 

concludes the paper. 

 

2. Related work 

Hussain et al. [17] proposed an AI-based 

behavioral biometrics architecture for human activity 

recognition (HAR) that utilizes a temporal-spatial fusion 

(TSF) network and a dynamic attention fusion unit 

(DAFU). The first phase of their approach enhances a 

lightweight EfficientNetB0 backbone using a unified 

channel-spatial attention mechanism to focus on human-

centric salient features. In the second phase, video data 

streams containing DAFU features with predetermined 

sequence durations are fed into the TSF network to 

extract behavioral, spatial, and temporal connections. By 

merging the temporal dependencies of the echo state 

network with the spatial and temporal dependencies of 

the convolutional long short-term memory (LSTM) 

network, the TSF network improves both accuracy and 

resilience. Compared to state-of-the-art (SOTA) 

methods, the proposed AI-based behavior biometrics 

framework achieved higher accuracies of 98.734%, 

80.342%, 98.987%, and 98.927% across four publicly 

available HAR datasets: Action. 

Hassan et al. [18] proposed a novel dynamic 

HAR method that uses a deep BiLSTM model assisted 

by a pre-trained transfer learning-based feature 

extraction strategy. The first step extracts high-level 

information from video frames using Convolutional 

Neural Network (CNN) models, specifically 

MobileNetV2. These extracted features are then input 

into a fine-tuned deep BiLSTM network to detect 

dependencies and interpret data. During testing, the 

model’s high-level parameters are iteratively fine-tuned, 

making it adaptable to varying conditions. Extensive 

testing on three benchmark datasets—UCF11, UCF 

Sport, and JHMDB—demonstrated the effectiveness of 

the model, achieving accuracies of 99.20%, 93.3%, and 

76.30%, respectively. These results confirm the high 

performance of the proposed model and underscore the 

significant advances in activity recognition. 

Miao et al. [19] explored the potential of self-

supervised learning (SSL) for wearable HAR (WHAR), 

which involves training a feature extractor on a large 

amount of unlabeled data and refining a classifier with a 

small amount of labeled data. However, most existing 

research overlooks the challenge of missing devices in 

multi-device WHAR scenarios. To address this, the 

authors proposed the Spatial-Temporal Masked 

Autoencoder (STMAE), an SSL WHAR method 

designed to handle multiple devices. By combining an 

asymmetrical encoder-decoder architecture with a two-

stage spatial-temporal masking technique, STMAE 

enhances performance in missing device situations by 

capturing representations of discriminative activities. 

Experimental results on four real-world datasets 
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confirmed STMAE’s effectiveness in different practical 

settings. 

Guo et al. [20] presented a HAR system that 

utilizes three types of sensors: Wi-Fi, inertial 

measurement units (IMUs), and their combination. 

Activity features were collected using Wi-Fi's Channel 

State Information (CSI) and IMU devices' 

accelerometers and gyroscopes. The system was 

trained on eight different everyday activities using six 

machine learning algorithms, including k-Nearest 

Neighbors (kNN). The results showed that combining 

CSI with IMU achieved the highest HAR accuracy, at 

89.38%. The SVM algorithm, using energy and average 

Fast Fourier Transform (FFT) features, consistently 

outperformed others, except when combining CSI and 

IMU. The study found that certain features and methods 

play a critical role in improving sensor fusion 

performance, although combining CSI with IMU does not 

always guarantee higher recognition accuracy across all 

methods and attributes. 

Park et al. [21] developed a Multiclass 

Autoencoder-based Active Learning (MAAL) technique 

for HAR that uses deep latent representations to connect 

the HAR and sample selection models. MAAL learns 

common properties of each activity class in latent space, 

which it then uses to guide training. Testing MAAL on 

two publicly available datasets showed improved 

performance across all active learning rounds, with an 

increase of 3.23% in accuracy and 3.67% in F1 score. 

The authors also provided numerical analyses and 

comparisons to demonstrate MAAL's superior 

performance over other methods in the active learning 

process. 

Wang et al. [22] proposed a training-free 

augmentation approach to address data scarcity in HAR. 

Rather than using conventional data augmentation 

techniques, this method introduces data processing 

methods that distinguish samples more effectively in 

real-world scenarios, improving data relevance for 

specific HAR tasks. The authors developed a 

methodology called CUDSG, which decouples and 

recombines gesture and identification information from 

WiFi data to produce virtual gesture samples for new 

user domains. This approach expands the sensing 

boundaries to new user domains without requiring 

significant user involvement. Their model achieved an 

average categorization accuracy increase from 57.3% to 

98.4% using classifiers such as SVM, kNN, and CNN, 

making CUDSG an effective method for enhancing 

gesture recognition systems' efficiency. 

 

2.1. Problem Statement 

Advancements in sensor technology have not 

simplified the task of reliably identifying human activities 

from sensor data, particularly in scenarios where 

activities exhibit continuity and overlap. Existing 

methods often struggle with low recognition accuracy 

due to their inability to differentiate between activities 

with similar sensor patterns. Additionally, many current 

approaches rely on supervised learning, which is not 

always practical in real-world settings due to the high 

costs and time required for gathering large, labeled 

datasets. 

To address these challenges, this research aims 

to develop an unsupervised deep learning method for 

human activity recognition (HAR) based on the 

segmentation of accelerometer sensor data. The goal is 

to enhance the accuracy and precision of recognition, 

particularly for overlapping and continuous tasks, by 

focusing on data segments that represent individual 

activities. The approach integrates attention 

mechanisms and advanced optimization techniques, 

improving the model’s ability to capture useful features 

and spatial dependencies in the sensor data. The overall 

objective is to create a robust framework for HAR that 

reduces the dependency on labeled data while 

addressing the challenges of activity continuity and 

overlap. 

 

3. Proposed System 

3.1. Dataset Description 

In this section, two sensor-based dataset is 

used for HAR, which is described as follows.  

 

3.1.1. Mhealth dataset 

The Mhealth dataset [23] contains data from 10 

subjects performing 12 physical activities, including 

standing still, walking, jogging, and climbing stairs. The 

participants wore sensors on three distinct locations: the 

right wrist, left ankle, and chest. These sensor 

placements are representative of real-world wearable 

devices such as smartwatches, fitness bands, and 

chest-mounted monitors, this is shown in Figure 1. The 

wide range of activities and diverse sensor placements 

simulate typical use cases for health and fitness 

applications [24]. 

Several sensors were used to enhance the 

body's movement recognition capabilities. The sensors 

that were utilised included a gyroscope, magnetometer, 

and accelerometer. For this purpose, a two-lead 

electrocardiogram (ECG) sensor was placed on the 

patient's chest. The sensors provide a frequency at 20 

milliseconds intervals. There were no limitations on the 

execution of the activities since they were recorded in a 

non-laboratory setting. Each subject's data was saved in 

its own file, and a total of 24 columns were used for each 

subject in the dataset. The activity label (class) was 

recorded in Column 24 to separate the activities, while 

23 columns were features. Listed in Table 1 are the 

tasks. 
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Table 1. Physical activities from Mhealth dataset 

Label Activity 

1 Standingstill 

2 Sittingandrelaxing 

3 Reclining 

4 Walking 

5 Climbing stairs 

8 Knee bending (crouching) 

9 Cycling 

10 Jogging 

11 Running 

12 Jumping backward and back 

 

3.1.2. PAMAP2 dataset 

The PAMAP2 dataset [25] includes data from 9 

subjects (1 female, 8 males) performing 18 physical 

activities, with 6 optional activities such as vacuum 

cleaning and ironing. Sensors were placed on the 

subjects’ chest, ankle, and wrist, similar to Mhealth. The 

dataset captures complex, everyday activities that 

introduce variability in terms of movement patterns, 

sensor orientation, and subject behavior. These 

characteristics make PAMAP2 particularly well-suited for 

testing the robustness of HAR models in uncontrolled 

environments. 

Both datasets exhibit variability that mirrors real-

world scenarios in several ways: 

 Number of Subjects: The datasets include 

subjects with varying physical attributes, such 

as age, gender, and fitness levels, which 

Figure 1. Location of sensors using two datasets 
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introduce natural variability in activity execution 

and sensor data. This variability is crucial for 

testing the generalizability of HAR systems 

across different populations. 

 Diversity of Activities: The datasets cover a wide 

range of activities, from basic movements like 

walking and standing still to more complex tasks 

like vacuum cleaning and jogging. These 

activities involve different motion patterns, 

speeds, and intensities, reflecting real-world 

challenges where activities may overlap or 

transition smoothly. 

 Sensor Locations and Orientations: Sensors 

placed on the wrist, chest, and ankle in both 

datasets represent the variability in sensor 

placement found in real-world applications. 

These locations affect the accuracy of activity 

recognition, as sensor orientation and 

movement patterns differ based on placement. 

For example, wrist-mounted sensors may 

capture more hand movements, while chest-

mounted sensors provide better data on full-

body movements. 

Table 2. Physical activities from PAMAP2 

dataset 

Label Activity 

1 Lying 

2 Sitting 

3 Standing 

12 Ascending stairs 

13 Descending stairs 

4 Walking 

5 Running 

6 Cycling 

7 Nordic walking 

16 Vacuum cleaning 

17 Ironing 

24 Rope jumping 

 

3.2. Preprocessing 

Normalisation has been accomplished using the 

Min-Max approach. This straightforward technique 

involves mapping all datasets to a range of values where 

the minimum and maximum are known. Because it is 

easy to convert any interval to another interval, we will 

be transforming all features into the interval [0, 1]. This 

means that the values for feature variables will be 0 and 

1, correspondingly. 

Imagine that the goal is to transform feature A 

from the dataset spanning minA and maxA into minB and 

maxB. To get the new value v′ in the new intermission, 

we can take any starting value, such v, from the initial 

interval and convert it as 

𝑣′ = (𝑣 −
𝑚𝑖𝑛
𝐴

)
𝑛𝑒𝑤𝑀𝑎𝑥−𝑛𝑒𝑤𝑀𝑖𝑛

𝑚𝑎𝑥
𝐴

−
𝑚𝑖𝑛
𝐴

+ (𝑛𝑒𝑤𝑀𝑖𝑛) (1) 

Pre-processing the Health and PAMAP2 

datasets posed several challenges, particularly in 

handling inconsistencies across subjects and variations 

in sensor placements: 

 Sensor Alignment: Due to differences in 

sensor placement across subjects, the raw data 

showed significant variability in orientation and 

scale. To address this, we applied Min-Max 

normalization to standardize the data across all 

subjects and activities. This ensured that sensor 

readings fell within a common range, making the 

data more comparable. 

 Missing Data and Noise: Both datasets 

contained some missing sensor readings and 

noise, especially during complex or high-motion 

activities. We employed interpolation techniques 

to fill in missing values and applied noise filtering 

using a low-pass filter to smoothen the signal 

and reduce noise artifacts. 

 Segmentation of Activities: Segmentation of 

continuous activities, such as walking and 

running, was a critical preprocessing step. We 

used a sliding window technique with a window 

size of 5 seconds and a 50% overlap, ensuring 

that each segment captured a full activity cycle 

while preserving temporal continuity. 

By addressing these preprocessing challenges, 

we ensured that our HAR model could effectively learn 

from the variability in sensor data, improving its 

robustness and generalization to real-world 

environments. 

 

3.3. Model Training Method 

The model in the suggested approach is made 

up of an p2. The encoder is employed to obtain a feature 

representation of the segment data, while the projectors 

are employed for the prediction of segment labels and 

the computation of contrastive loss. With the use of 

SimCLR and SDFD's loss functions, we revised the 

model's parameters. 

 

3.3.1. Segment Discrimination 

The assignment of pseudo-labels generated 

from the input datasets distinguishes segment 

discrimination (SD) from ID, an ID-based technique. ID 

is a technique that Wu et al. [26] suggested for 

unsupervised learning. Segment labels, rather than 

instance labels, are utilised by the SD method's pseudo-

labels, which are similar to ID. The size of the memory 
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bank [26] is equal to the sum of segment labels in the 

SD implementation. A group of feature representations 

that have been normalised makes up the memory bank. 

In contrast, SD trains a model in the same way as ID but 

with segment labels rather than instance labels. With M 

segments utilised in SD, the memory bank is 

{𝑓1, 𝑓2, . . . , 𝑓𝑀} . When the feature 𝑓 =  𝑓𝑝2(𝑓𝑒(𝑥))  got 

from the input data x besides the segment label is s, the 

likelihood 𝑃(𝑠|𝑓) is expressed as shadows: 

𝑃(𝑠|𝑓) =
exp (𝑓𝑠

⊺𝑓)

∑ 𝑒𝑥𝑝(𝑓𝑠
⊺𝑓)𝑆

𝑗=1

    (2) 

The ith piece of input data, xi, is known to be the 

sith segment in SD. Hence, the damage assessment 𝐿sd 

using the chin in the memory bank is  

𝐿sd = −∑ log 𝑃(𝑠𝑖|𝑓𝑖) = −∑ 𝑙𝑜𝑔
𝑒𝑥𝑝(𝑓𝑠𝑖

⊺ 𝑓)

∑ 𝑒𝑥𝑝(𝑓𝑠𝑗
⊺ 𝑓)𝑆

𝑗=1

𝑁
𝑖=1

𝑁
𝑖=1  (3) 

To use SD is to gain two benefits. The first is that 

you can set a specific number of output dimensions. 

Compared to the total sum of instances, the number of 

segments has less labels. Nonetheless, it may be 

astronomically huge when contrasted with the output 

size of a standard classification model. Just like ID, SD 

can be solved in the same way. Secondly, the segments 

include information that can be used. Assigning labels to 

segments makes it possible for data inputted from 

segments to produce features consistent with the same 

activity. It is anticipated that this will remain resilient in 

the face of input data phase differences. 

 

3.3.2. SD and Feature Decorrelation 

One approach that Tao et al. [27] suggested 

utilising SD for IDFD is SD and feature decorrelation 

(SDFD). The loss equation 𝐿idfd  used in IDFD is a 

amalgamation of the loss function 𝐿id  used in ID is 

𝐿𝑠𝑑𝑓𝑑 = 𝐿𝑠𝑑 + 𝐿𝑓𝑑, which changes the ID loss from the 

IDFD loss function 𝐿𝑖𝑑𝑓𝑑 = 𝐿𝑖𝑑 + 𝐿𝑓𝑑. 

A soft orthogonal constraint that permits non-

zero feature representations is FIS. By comparing FIS to 

a regular orthogonal constraint, Tao et al. [27] found that 

FIS improved learning stability. For each batch, we can 

indicate the feature representation. 𝐹 =  [𝑓1, 𝑓2, . . . , 𝑓𝑏] 
as the dimension of the feature depiction d, the batch 

size b, and the ith feature depiction 𝑓𝑖 . 𝑉 =  𝐹⊺ > =

 [𝑣1, 𝑣2, . . . , 𝑣𝑑] is used, where the FIS loss function 𝐿fd is 

as follows: 

𝐿𝑓𝑑 = −∑ 𝑙𝑜𝑔
𝑒𝑥𝑝(𝑣𝑖

⊺𝑣𝑖)

∑ 𝑒𝑥𝑝(𝑣𝑖
⊺𝑣𝑖)

𝑑
𝑗=1

𝑏
𝑖=1    (4) 

We anticipate that the feature representation 

elements will become non-correlated upon implementing 

FIS in IDFD and SDFD. 

 

3.3.3. Segment-Based SimCLR 

The choice of Segment-Based SimCLR 

combined with the Secretary Bird Optimization Algorithm 

(SBOA) offers several advantages in addressing key 

challenges within human activity recognition (HAR) 

tasks. SimCLR, a contrastive learning framework, has 

shown exceptional ability in learning effective feature 

representations from unlabeled data. This makes it 

particularly suitable for HAR scenarios where labeled 

data is limited or difficult to obtain. By utilizing segment-

based data, our approach ensures that the model can 

capture activity continuity and temporal dependencies, 

which are essential for recognizing overlapping and 

continuous activities—an inherent challenge in real-

world HAR applications. Unlike traditional methods that 

struggle with sensor noise and variability in real-world 

conditions, segment-based SimCLR enhances 

robustness by leveraging temporal segments that focus 

on single activities. 

The integration of SBOA as an optimization 

strategy further enhances the proposed model by 

providing an efficient mechanism for hyperparameter 

tuning. SBOA is inspired by the hunting behavior of the 

secretary bird and effectively balances exploration and 

exploitation, enabling the model to search for optimal 

solutions while avoiding premature convergence to local 

optima. This optimization approach is particularly 

advantageous in multi-sensor HAR environments, where 

data is complex and diverse. SBOA improves the 

generalizability of the model by fine-tuning 

hyperparameters that optimize the learning process, 

leading to better recognition performance even in the 

presence of device variability and environmental noise. 

This combination of SimCLR and SBOA 

provides a powerful and adaptive framework for HAR, 

improving both the accuracy and robustness of activity 

detection in real-world environments, outperforming 

other approaches in scenarios with high data variability 

and noise. 

Using a segment to generate positive pairs, 

SimCLR (seg) is version of SimCLR. By dividing the 

instance data by the window size, the input positive pairs 

are generated when SimCLR is applied to HAR. When 

two instances' data comes from the same segment, 

however, SimCLR (seg) positive pairs are formed. 

The loss function in SimCLR (seg) is identical to 

the one in SimCLR. Positive pairs are collections of 

instance data that share a segment, such as xi and xj. 

Consider two techniques for data enhancement, t and t0.  

 and 𝑓(𝑥)  =  𝑓𝑝1(𝑓𝑒(𝑥))  be the classical to be 

trained. The feature demonstrations of the two positive 

pairs loss function are zi = 𝑓(𝑡(𝑥𝑖)) 𝑎𝑛𝑑 𝑧𝑗  =  𝑓(𝑡′(𝑥𝑗)). 

Therefore, the SimCLR loss function Ls is uttered using 

the feature symbols of the positive pairs 𝑧i and 𝑧j as 

𝐿𝑠 = −𝑙𝑜𝑔
𝑒𝑥𝑝(

𝑠𝑖𝑚(𝑧𝑖,𝑧𝑗)

𝜏
)

∑ 1(𝑘≠𝑖)𝑒𝑥𝑝(
𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)

𝜏
)2𝑏

𝑘=1

   (5) 
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A number of parameters are defined here: t for 

temperature, b for batch size, 1 for the indicator function, 

and sim for cosine similarity. In this investigation, we 

employed a simple cross-entropy with t = 1. The goal of 

any measurable activity involving the creation of positive 

pairings based on segments is to acquire feature 

representations. 

 

3.3.4. Segment-Based SimCLR with SDFD 

A new approach integrating SDFD and SimCLR 

(seg) is presented in the paper. Similar to SimCLR (seg), 

the input data are generated in this way. We merge the 

two sets of data and send them as a single batch 

function does not need a data pair. Together, they form 

the loss function L, which: 

𝐿 = 𝜆1𝐿𝑠 + 𝜆2𝐿𝑠𝑑 + 𝜆3𝐿𝑓𝑑  (6) 

In this loss function, 𝜆1, 𝜆2 and 𝜆3 denote the set 

𝜆2=𝜆3= 1 the work [27] and set 𝜆1 to 1. Although it takes 

a lot of time to tune the hyperparameters [28], doing so 

might lead to better accuracy. 

This research delves into the computational 

complexity of the suggested method's loss function. 

Because only the data-selection strategy is different 

between SimCLR and SimCLR (seg), the computational 

complexity of the loss function is identical to both. By 

treating the memory bank complexity per batch is 

lowered by O(bd(N - M)) while transitioning from IDFD to 

SDFD. Given that SimCLR produces two times the 

number of feature maps as the batch size, the total 

computational complexity of the suggested approach is 

equal to the sum of SimCLR's twice that of SDFD. 

 

3.4. Classification using Convolutional Block 

Attention Module 

An attention mechanism that improves 

presentation by strengthening informative channels and 

critical regions of intermediate features was suggested 

in [29-30] as the Convolutional Block Attention Module 

(CBAM). Using ImageNet and other popular computer 

vision datasets, the primary study assesses the effects 

of CBAM. But in these trials, they refrained from using 

sensor data. Because attention modules require a small 

number of parameters—negligible—and layer, and it 

also has the potential to improve performance. Separate 

from CBAM are the modules that deal with channel 

attention (CA) and spatial attention (SPA). The units are 

intended to be applied subsequent to convolutional 

layers, as their names indicate. 

Maximum spatial dimension is used to map an 

MLP by decrease ratio (r) and apply sigmoid activation 

to the input feature. A shared MLP module enables a 

computational efficiency/attention accuracy trade-off in 

the channel attention mechanism, with the reduction 

ratio regulating the degree of dimensionality reduction as 

a crucial parameter. Increasing the computational 

complexity is the trade-off for improving the expressive 

capabilities of the channel attention mechanism with a 

smaller reduction ratio. Conversely, computational 

complexity can be reduced with a larger reduction ratio. 

Optimizing the reduction ratio for certain applications is 

necessary to achieve optimal processing efficiency and 

attention performance. More precisely, to map 

𝑀𝑐ℎ ∈𝐶𝑋1𝑋1 given an input feature𝑋 ∈𝐶𝑋𝐻𝑋𝑊, we calculate 

the maximum and average pooling vectors across the 

spatial dimension as follows: 

Favg=GlobalAvgPoolsp(X)∈RC×1×1 and Fmax

=GlobalMaxPoolsp(X)∈RC×1×1. After that, each of these 

vectors is fed into the shared MLP layer by layer. The 

input layer contains C neurons, the hidden layer contains 

C/r neurons, and the output layer contains C neurons. 

Two vectors are produced by MLP, and then they are 

combined by adding together all the elements in each 

vector. The next step is to use a sigmoid (s) activation 

layer to convert numbers between 0 and 1. Lastly, the 

vector X is multiplied by the channel attention value for 

every element in that channel. Here are the procedures 

followed to calculate the channel attention map: 

𝐹𝑎𝑣𝑔
𝑐ℎ = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑠𝑝(𝑋)   (7) 

𝐹𝑚 𝑎𝑥
𝑐ℎ = 𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑠𝑝(𝑋)   (8) 

𝑀𝑐ℎ(𝑋) = 𝜎(𝑀𝐿𝑃(𝐹𝑎𝑣𝑔
𝑐ℎ ) + 𝑀𝐿𝑃(𝐹𝑚𝑎𝑥

𝑐ℎ ))  (9) 

SPA module contains of three consecutive 

actions. First, two tensors, 𝐹avg
sp

 and 𝐹𝑚𝑎𝑥
𝑠𝑝

∈1𝑋𝐻𝑋𝑊 , are 

totalled using extreme besides average input feature X. 

Second, two tensors are convolution layer (𝐶𝑜𝑛𝑣(. )) with 

a kernel size of 𝑘𝑥𝑘 to generate one map (∈1𝑋𝐻𝑋𝑊). The 

third step in creating the final spatial attention mask is 

applying the sigmoid activation layer to the output. The 

last step is to create a spatial attention mask and by it 

element by element. The spatial attention mask is 

computed using the subsequent equations: 

𝐹𝑎𝑣𝑔
𝑠𝑝

= 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑐ℎ(𝑋)         (10) 

𝐹𝑚𝑎𝑥
𝑠𝑝

= 𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑐ℎ(𝑋)   (11) 

𝑀𝑠𝑝(𝑋) = 𝜎 (𝐶𝑜𝑛𝑣(𝑓𝑘𝑥𝑘[𝐹𝑎𝑣𝑔
𝑠𝑝

; 𝐹𝑚𝑎𝑥
𝑠𝑝

]))  (12) 

Given an input feature X, the complete CBAM is 

as shadows: 

𝑋′ = 𝑀𝑐ℎ(𝑋)    (13) 

𝑋′′ = 𝑀𝑠𝑝(𝑋′)    (14) 

By progressively merging channel and spatial 

attention, CBAM makes use of feature cross-channel 

and spatial interactions. To be more specific, it 

emphasises informative local regions and useful 

channels. The CBAM is designed to be lightweight. To 

learn in a shared MLP, the CA module needs 2 ∗  𝐶 ∗

 (𝐶/𝑟)  +  𝐶 +  (𝐶/𝑟)  parameters, whereas the SPA 

module needs k * k * 2 parameters, where k layer's 

kernel. From this vantage point, it's easy to see how 
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CBAM's benefits stem from effective feature refining 

rather than the model's enhanced capability. Notably, 

the problem dictates that the only parameters that can 

be experimentally determined are r for CA and k for the 

SPA module. 

One can use either the CA or SPA modules in 

concurrently, or they can be used sequentially, or they 

can be used with either the CA or SPA modules first. 

After reviewing the experimental results from the main 

paper of the CBAM approach, we chose to study CA 

alone, SPA alone, and CA-SPA (CASPA, which stands 

for CA followed by SPA). The applied after each 

convolutional layer or after a single convolutional layer, 

as proposed in the main study. Since resource-

constrained devices often have only few parameters, we 

tested various approaches to utilising this attention 

mechanism with sensor data from their point of view in 

this work. 

 

3.4.1. Fine-tuning using Secretary Bird Optimization 

Algorithm (SBOA) 

This study introduces the Secretary Bird 

Optimization Algorithm (SBOA), a tool for fine-tuning the 

parameters of the Channel Attention (CA) and Spatial 

Attention (SPA) mechanisms. The algorithm is inspired 

by the natural behavior of secretary birds in hunting prey 

and avoiding predators. The following section provides a 

mathematical model of SBOA, reflecting the secretary 

bird’s behavior as it hunts snakes and evades natural 

enemies, which is then applied to optimize deep learning 

models. 

 

3.4.1.1 Initial preparation phase 

The Secretary Bird Optimization Algorithm 

(SBOA) is a population-based metaheuristic technique, 

where each "secretary bird" represents a member of the 

algorithm's population. The decision variable values are 

determined by the positions of each bird in the solution 

space. In the SBOA framework, the positions of the 

secretary birds correspond to potential solutions to the 

optimization problem. To initialize the positions of the 

secretary birds randomly, the first step of SBOA uses 

Equation (15). 

𝑋𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑖 = 1,2, …𝐷𝑖𝑚 (15) 

where 𝑋i signifies the position of bird 𝑙𝑏j and 𝑢𝑏j 

are the bounds, respectively, besides r represents a 

random sum among 0 besides 1. 

𝑋 =

[
 
 
 
 
𝑥1,1 𝑥1,2

𝑥1,𝑗 ⋯ 𝑥1,𝐷𝑖𝑚

𝑥2,1 𝑥2,2
𝑥2,𝑗 ⋯ 𝑥2,𝐷𝑖𝑚

𝑥3,1

⋮
𝑥𝑁,1

𝑥3,2

⋮
𝑥𝑁,2

𝑥3,𝑗

⋮
𝑥𝑁,𝑗

⋯
⋯
⋯

𝑥3,𝐷𝑖𝑚

⋮
𝑥𝑁,𝐷𝑖𝑚]

 
 
 
 

𝑁×𝐷𝑖𝑚

 (16) 

Let X represent the group of secretary birds, with 

𝑋i denoting the position of the ith bird, and 𝑋i,j 

representing the jth component of the ith bird's position in 

the solution space. The Nth member of the group 

represents the dimension of the variable, denoted as 

Dim. 

Each bird represents a potential solution to the 

optimization problem. To evaluate these solutions, we 

compute the objective function based on the values 

suggested by each secretary bird for the problem 

variables. The results of the objective function are then 

compiled into a vector using Equation (17). 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

   (17) 

In this case, F represents the objective function 

value obtained by the ith secretary bird. To find the best 

possible solution, we compare the values of the 

objective functions calculated for each bird. This 

comparison helps evaluate the quality of each potential 

solution. For a minimization problem, the solution with 

the lowest objective function value is considered optimal, 

while for a maximization problem, the candidate with the 

highest value is preferred. During each iteration, the 

objective function values and the positions of the 

secretary birds are updated, making it crucial to select 

the best candidate solution at every step. 

The Secretary Bird Optimization Algorithm 

(SBOA) is guided by two distinct behaviors modeled 

after the secretary bird’s actions: 

(a) The bird’s hunting approach, and 

(b) The bird’s escape strategy. 

Thus, each iteration involves two steps to 

update the positions of the secretary bird population, 

ensuring the balance between exploration and 

exploitation. 

 

3.4.1.2 Hunting approach of secretary bird 

(exploration phase) 

When hunting snakes for food, secretary birds 

usually go through three phases: seeking for prey, eating 

prey, and attacking prey [30]. Figure 2 depicts the 

secretary bird's hunting behaviour. 

We have split the secretary bird's hunting 

procedure into three equal parts based on the biological 

data of the stages and the lengths of each in the process. 

namely 𝑡 <
1

3
𝑇,<

1

3
𝑇 < 𝑡 <

2

3
𝑇 𝑎𝑛𝑑 <

2

3
𝑇 < 𝑡 < 𝑇  They 

correlate to the three stages of the secretary bird's 

hunting behaviour: seeking its food, eating it, and finally 

attacking it. As a result, here is how SBOA models each 

phase: 
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Stage 1 (Searching for Prey): Finding prey, 

such as snakes, is the first step in the hunting process 

for secretary birds. Secretary birds can see snakes 

concealed in the long savannah grass with the speed of 

light due to their extraordinary vision. As they cautiously 

scan their environment for any indications of snakes, 

they employ their lengthy legs to swish the ground. Their 

long necks and legs allow them to keep a reasonable 

distance from snakes, which helps them avoid assaults. 

This happens during the first optimisation iterations 

when exploring new possibilities is key. This stage uses 

a differential evolution method because of that. In order 

to improve algorithm diversity and global search 

capabilities, differential evolution makes use of individual 

differences to provide new solutions. One way variety 

helps to prevent local optima traps is by introducing 

differential mutation procedures. The likelihood of 

discovering the global optimum can be enhanced by 

allowing individuals to explore diverse portions of the 

solution space. So, using Eqs. (18) and (19), we can 

mathematically represent the process of the secretary 

bird revising its site in the Searching for Prey phase. 

𝑊ℎ𝑖𝑙𝑒 𝑡 <
1

3
𝑇, 𝑥𝑖,𝑗

𝑛𝑒𝑤𝑃1 = 𝑥𝑖,𝑗 + (𝑥𝑟𝑎𝑛𝑑𝑜𝑚_1 − 𝑥𝑟𝑎𝑛𝑑𝑜𝑚_2) ×

𝑅1       (18) 

𝑥𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑃1, 𝑖𝑓 𝐹𝑖
𝑛𝑒𝑤,𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
   (19) 

where, t represents the current iteration 

quantity, T characterizes the extreme iteration sum, 

𝑋𝑖
𝑛𝑒𝑤,𝑃1

 embodies bird in the first phase, and 𝑥𝑟𝑎𝑛𝑑𝑜𝑚_1 

and 𝑥𝑟𝑎𝑛𝑑𝑜𝑚_2  are the haphazardly proposed answers 

during the initial round of iteration. R1 is a randomly 

generated array of dimensions 1 × Dim, where Dim is the 

space, and the interval [0, 1] is used. 𝑋𝑖
𝑛𝑒𝑤,𝑃1

 Signifies its 

charge of the jth dimension, and 𝐹𝑖
𝑛𝑒𝑤,𝑃1

 represents its 

function. 

Stage 2 (Consuming Prey): Once a secretary 

bird spots a snake, it starts hunting in a very unusual 

way. Instead of rushing in for battle like other raptors do, 

the secretary bird uses its nimble movement to evade 

the serpent. The secretary bird maintains its position, 

keeping a close eye on the snake from above. Its astute 

observation of the snake's movements allows it to hover, 

leap, and subtly annoy the serpent, eventually draining 

its energy. Here, we implement Brownian motion (RB) to 

mimic the secretary bird's haphazard flight patterns. 

Using Eq. (20), one can mathematically model Brownian 

motion. By employing this "peripheral combat" tactic, the 

secretary bird gains a substantial physical edge. Snakes 

Figure 2. Hunting behaviour 
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have a hard time entwining themselves with this bird's 

lengthy legs, and the thick keratin scales that coat its 

talons and legs act like armour, protecting it from 

poisonous snakes' fangs. At this point, the secretary bird 

occasionally stops what it's doing to focus its keen vision 

on the snake. We apply Brownian motion and the idea of 

"𝑥𝑏𝑒𝑠𝑡" (the best position a person has ever had) in this 

context. With " 𝑥𝑏𝑒𝑠𝑡 " users may narrow their local 

searches to the best positions they've already 

discovered, allowing them to delve further into the 

solution space. In addition to assisting individuals in 

delaying convergence to local optima, this method also 

speeds up the algorithm's convergence to the optimal 

solution space positions. This is due to the fact that 

people can enhance their odds of discovering the global 

optimum by searching using both global information and 

their own previous best locations. Better outcomes when 

solving complicated issues are achieved when the 

unpredictability of Brownian motion is introduced, since 

it allows individuals to gives possibilities to avoid being 

locked in local optima. Thus, by applying Eqs. (21) and 

(22) we can mathematically represent the process of the 

secretary bird adjusting its location in the Consuming 

Prey stage. 

𝑅𝐵 = 𝑟𝑎𝑛𝑑𝑛(1, 𝐷𝑖𝑚)    (20) 

𝑊ℎ𝑖𝑙𝑒 
1

3
𝑇 < 𝑡 <

2

3
𝑇. 𝑥𝑖,𝑗

𝑛𝑒𝑤𝑃1 = 𝑥𝑏𝑒𝑠𝑡 + 𝑒𝑥𝑝 ((𝑡/𝑇⋀4) ×

(𝑅𝐵 − 0.5) × (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑗))    (21) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑃1, 𝑖𝑓 𝐹𝑖
𝑛𝑒𝑤,𝑃1 < 𝐹𝑖  

𝑋𝑖 , 𝑒𝑙𝑠𝑒
   (22) 

Here, randn(1, Dim) stands for a normally 

distributed array of size 1 × Dim and a standard deviation 

of 1, and xbest denotes the top value at the moment.. 

Stage 3 (Attacking Prey): The secretary bird 

sees the perfect opportunity when the snake is about to 

die and acts quickly, attacking with its strong leg 

muscles. At this point, the secretary bird will usually start 

kicking the snake with its leg, which it will quickly lift and 

aim with its keen talons, usually going for the snake's 

head. The goal of delivering these kicks is to swiftly 

incapacitate so that you can escape its bite. The deadly 

sting of the talons hits the snake where it counts most, 

killing it instantly. When a snake gets too big to be 

destroyed right away, the secretary bird will sometimes 

release it into the sky, where it will crash to the earth. We 

improve accuracy, increase the search capabilities, and 

decrease the chance of SBOA getting stuck in local 

solutions by introducing the Levy flight strategy to the 

random search process. Short, steady steps 

interspersed with rare long hops define the erratic gait 

pattern known as Levy flying. It improves the secretary 

bird's search capabilities by simulating its flight ability. 

The algorithm can more efficiently explore the entire 

search space with large steps, which moves people 

closer to the optimal position, and the optimisation 

accuracy can be improved with small steps. We include 

a nonlinear perturbation factor expressed as to make 

SBOA more dynamic, adaptive, and flexible during 

optimisation. This will allow SBOA to attain a better 

balance between exploration and exploitation, avoid 

premature convergence, accelerate convergence, and 

improve procedure presentation. (1 −
𝑡

𝑇
) (2 ×

𝑡

𝑇
) 

Therefore, bird’s site in the Attacking demonstrated 

using Eqs. (23) and (24). 

𝑊ℎ𝑖𝑙𝑒 𝑡 >
2

3
𝑇, 𝑥𝑖,𝑗

𝑛𝑒𝑤1 = 𝑥𝑏𝑒𝑠𝑡 + ((1 −
𝑡

𝑇
)⋀ (2 ×

𝑡

𝑇
)) ×

𝑥𝑖,𝑗 × 𝑅𝐿       (26) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑃1, 𝑖𝑓 𝐹𝑖
𝑛𝑒𝑤𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
    (24) 

The algorithm's optimisation accuracy is 

improved by utilising the flight, abbreviated as RL.’ 

𝑅𝐿 =  0.5 ×  𝐿𝑒𝑣𝑦(𝐷𝑖𝑚)   (25) 

The Levy flight is denoted as Levy (Dim) here. 

Here is how it is computed: 

𝐿𝑒𝑣𝑦(𝐷) = 𝑠 ×
𝑢×𝜎

|𝑣|
1
𝜂

    (26) 

The assignment of pseudo-labels generated 

from the input datasets distinguishes segment 

discrimination (SD) from ID, an ID-based technique. ID 

is a technique that Wu et al. [26] suggested for 

unsupervised learning. Segment labels, rather than 

instance labels, are utilised by the SD method's pseudo-

labels, which are similar to ID. The size of bank [26] is 

equal to the sum of segment labels in the SD 

implementation. A group of feature representations that 

have been normalised makes up the memory bank. In 

contrast, SD trains a model in the same way as ID but 

with segment labels rather than instance labels. With M 

segments utilised in SD, 

𝜎 = [
Γ(1+𝜂)×𝑠𝑖𝑛(

𝜋𝜂

2
)

Γ(
1+𝜂

2
)×𝜂×2(

𝜂−1

2
)
]

1

𝜂

   (27) 

Here, Γ signifies the gamma function besides 𝜂 

has a charge of 1.5. 

 

3.4.1.3 Escape policy of secretary bird (exploitation 

phase) 

Eagles, hawks, foxes, and jackals are some of 

the biggest predators that secretary birds face. These 

animals can assault the birds or even take their food. In 

order to safeguard themselves or their food, secretary 

birds usually use a variety of avoidance tactics when 

they meet these dangers. There are essentially two 

types of these tactics. Running quickly or taking flight is 

the initial tactic. Because of their extraordinarily long 

legs, secretary birds can run at incredible speeds. They 

are called "marching eagles" because they may walk 20 

to 30 kilometres in a day. Also, secretary birds are great 

fliers, so they can quickly take to the air and go 
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somewhere safe if they feel threatened. Camouflage is 

the second tactic. To evade predators, secretary birds 

may blend in with their surroundings using constructions 

or colours. The SBOA is based on the premise that the 

following two events happen equally likely: 

i. C1: Camouflage by situation; 

ii. C2: Fly or run away. 

The first tactic is for secretary birds to look for a 

place to hide as soon as they sense a predator is close 

by. They will choose to flee or run quickly if there is no 

secure and appropriate place to hide nearby. We provide 

a factor, referred to as (1 −
𝑡

𝑇
)

2

 This dynamic factor aids 

the procedure in finding a happy medium between 

exploring (looking for undiscovered solutions) and 

exploiting (making use of existing ones). At certain 

points, you can raise the bar for exploration or improve 

exploitation by modifying these variables. Using Eq. 

(28), we can describe the two evasion tactics used by 

secretary birds, and Eq. (29) expresses this updated 

condition. 

𝑋𝑖,𝑗
𝑛𝑒𝑤,𝑃2 =

{
𝐶1: 𝑥𝑏𝑒𝑠𝑡 + (2 × 𝑅𝐵 − 1) × (1 −

𝑡

𝑇
)

2

× 𝑥𝑖,𝑗 , 𝑖𝑓 𝑟 𝑎𝑛𝑑 < 𝑟𝑖

𝐶2: 𝑥𝑖,𝑗 + 𝑅2 × (𝑥𝑟𝑎𝑛𝑑𝑜𝑚 − 𝐾 × 𝑥𝑖,𝑗), 𝑒𝑙𝑠𝑒
 

      (28) 

𝑋𝑖 = {
𝑋𝑖,𝑗

𝑛𝑒𝑤,𝑃2, 𝑖𝑓 𝐹𝑖
𝑛𝑒𝑤,𝑃2 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
   (29) 

Here, r = 0.5, R2 characterizes the random peer 

group of the customary distribution, 𝑥random denotes the 

iteration's random solution, while K stands for the 

integers 1 and 2, which may be determined using Eq. 

(30). 

𝐾 =  𝑟𝑜𝑢𝑛𝑑(1 +  𝑟𝑎𝑛𝑑(1, 1))   (30) 

Here, 𝑟𝑎𝑛𝑑(1, 1) means haphazardly making a 

random sum among (0,1). 

 

3.4.1.4 Algorithm Complexity Analysis 

It is vital to analyse an algorithm's computational 

complexity in order to determine its execution time, as 

different methods require different time to optimise the 

same problems. The temporal complexity of SBOA is 

examined in this work using Big O notation. The 

maximum numeral of iterations is T, the dimensionality 

is Dim, and N is the populace size of secretary birds. 

Randomly initialising the population has a time 

complexity of O(N), according to the rules of operation 

for symbol O. As part of the procedure to update the 

solution, the computational complexity is 𝑂(𝑇 ×  𝑁)  +

 𝑂(𝑇 ×  𝑁 ×  𝐷𝑖𝑚) , which updating the positions of 

every possible fix. Based on this, we can state the overall 

computational complexity of the proposed SBOA 

as𝑂(𝑁 × (𝑇 ×  𝐷𝑖𝑚 +  1)). 

3.5. Postprocessing step 

Training matrices in the CA-SPA network are 

datasets, with activity labels assigned to each matrix. By 

utilising the N samples of neighbouring labels in the 

projected sequence of movement, the suggested 

strategy can decrease noise when identifying a subject's 

activity during the test phase. There is no mixing of test 

datasets during testing; rather, each class (activity) 

enters testing in turn. A window of size n is produced and 

initialised with x labels once the system announces the 

findings. 

After then, the voting part of the process begins. 

Counting the number of labels of the same kind in the 

window is the voting technique. When the number of 

comparable labels exceeds a certain threshold, one 

label is considered to have "won" and all labels in the 

window are changed to reflect that. If this isn't satisfied, 

the window will proceed normally. 

Two or more victors might emerge from a single 

window if the voting percentage was lower than 60%. 

Where 𝑊𝑠  is the size of the window and 𝐶𝐿𝑛  is the 

number of comparable labels, we get Equation (31). 

Once the required condition is satisfied—that is, if the 

acquired number is larger than or equal to it—the 

following step is to alter the window labels. Take the 

window size (Ln) as an example: it's 10. The other labels 

are replaced with the winning label when the sum of 

comparable labels in the preliminary window is greater 

than or equal to 6, which is 60%. A quorum of labels in 1 

has been attained in the preliminary window, meaning 

the modifications have been applied. 

𝑃 = {
𝐶𝐿𝑛∗100

𝑊𝑠
    (31) 

{

𝐶𝑜𝑢𝑛𝑡 𝐿1 = 8
𝐶𝑜𝑢𝑛𝑡 𝐿3 = 1
𝐶𝑜𝑢𝑛𝑡 𝐿5 = 1

 

𝑃 =
𝐶𝐿1∗100

10
= 80 ≥ 60    (32) 

This finding indicates that the condition is 

satisfied, and the window labels should be updated. 

According to the results of the various studies, 

the probability of errors increases as the sum of classes 

dataset increases due to the increased likelihood of 

windows being created between classes. The sum of 

classes in the dataset should so dictate the window size. 

In Section 4, we examine and contrast the findings of 

various studies conducted up to this point. Table 3 

displays the algorithm, and Figure 3 shows the flow 

diagram. 

 

3.6. Implementation Details 

Using Python's TensorFlow (version 2) and 

Keras packages, the suggested CBAM model was put 

into action. For the training phase, we utilised the SBOA 

optimizer with its predefined setting.



Vol 6 Iss 6 Year 2024 M. Janardhan et.al, /2024 

Int. Res. J. Multidiscip. Technovation, 6(6) (2024) 1-16 | 12 

 

Table 3. Algorithm of the postprocessing step. 

1. 𝑆𝑡𝑎𝑟𝑡 

2. 𝐼𝑛𝑝𝑢𝑡𝑠: 𝑝𝑟𝑒𝑑𝑒𝑐𝑡𝑒𝑑_𝑑𝑎𝑡𝑎, 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

3. 𝐹𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (0, 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒): 

4. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 [𝑖𝑛𝑑𝑒𝑥: 𝑖𝑛𝑑𝑒𝑥 + 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒] 

5. 𝐹𝑜𝑟 𝑢𝑛𝑖𝑞𝑢𝑒_𝑐𝑙𝑎𝑠𝑠 𝑖𝑛 𝑠𝑒𝑡 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤): 

6. 𝐼𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤. 𝑐𝑜𝑢𝑛𝑡 (𝑢𝑛𝑖𝑞𝑢𝑒_𝑐𝑙𝑎𝑠𝑠)  > =  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

7. 𝑁𝑒𝑤_ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤 =  [𝑢𝑛𝑖𝑞𝑢𝑒_𝑐𝑙𝑎𝑠𝑠]  ∗  𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 

8. 𝑃𝑜𝑠𝑡_𝑝𝑟𝑜𝑠𝑠𝑒𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎. 𝑒𝑥𝑡𝑒𝑛𝑑 (𝑛𝑒𝑤_𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤) 

9. 𝐵𝑟𝑒𝑎𝑘 

10. 𝑃𝑜𝑠𝑡_𝑝𝑟𝑜𝑠𝑠𝑒𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎. 𝑒𝑥𝑡𝑒𝑛𝑑 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑖𝑛𝑑𝑜𝑤) 

11. 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑝𝑜𝑠𝑡_𝑝𝑟𝑜𝑠𝑠𝑒𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎 

12. 𝐸𝑛𝑑 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As for the learning rate, it was 0.0001, and the 

batch size was 64. This study employed the categorical 

cross-entropy loss function (HAR) due to its foundation 

in a multiclass classification issue. Furthermore, while 

initialising the parameters of the deep models, we 

utilised the same seed value to guarantee that the 

initializations could be reproduced for the purpose of 

comparing the models' results across several runs. We 

also used 60% of the datasets for training, 20% for 

testing, besides 20% for validation, in that order. We also 

looked at five-fold cross validation to learn more about 

the dependability of the suggested models. The tests 

reported in this article were conducted using Google 

Colaboratory and Python (version 3). 

4. Results and Discussion 

4.1. Validation Analysis of Projected Classifier 

The existing techniques [17-22] from Section 2 

uses various different datasets, however, the proposed 

model uses Mhealth and PAMAP2 dataset. Therefore, 

the research work implements the existing models on 

these datasets and results are averaged, which is 

exposed in Table 4 and 5. 

In Table 4, a comparative analysis of the 

proposed model on the Mhealth dataset is presented. 

The SVM [20-22] classifier achieved an accuracy of 

91.12%, with a precision of 92.09%, a recall of 90.43%, 

and an F1-score of 91.13%.  

 

Figure 3. Post-processing 
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Table 4. Comparative Analysis of proposed approach on Mhealth dataset 

Classifiers Accuracy Precision Recall F1-Score 

SVM [20,22] 91.12 92.09 90.43 91.13 

MLP [20] 91.68 92.23 90.57 91.71 

DAFU [17] 92.51 92.95 91.40 92.17 

BiLSTM [18] 89.32 90.73 88.21 89.27 

STMAE [19] 89.46 90.21 88.21 89.31 

SVDD [21] 91.82 92.28 91.12 91.76 

CASANet-SBOA 94.17 94.28 93.76 93.93 

 

Table 5. Comparative analysis of proposed approach on PAMAP2 data 

Classifier Accuracy Recall Precision F1-Score 

SVM [20,22] 88.00 90.90 87.65 89.99 

MLP [20] 89.57 91.70 89.66 90.65 

DAFU [17] 87.00 93.91 90.45 91.65 

BiLSTM [18] 89.90 95.14 92.47 92.23 

STMAE [19] 92.50 96.40 94.50 93.30 

SVDD [21] 94.50 97.40 95.10 94.30 

CASANet-SBOA 96.17 99.28 98.76 98.93 

The MLP [20] classifier achieved an accuracy of 

91.68%, with a precision of 92.23%, a recall of 90.57%, 

and an F1-score of 91.71%. The DAFU [17] classifier 

attained an accuracy of 92.51%, with a precision of 

92.95%, a recall of 91.40%, and an F1-score of 92.17%. 

The BiLSTM [18] classifier achieved an accuracy of 

89.32%, a precision of 90.73%, a recall of 88.21%, and 

an F1-score of 89.27%. The STMAE [19] classifier 

attained an accuracy of 89.46%. The SVDD [21] 

classifier achieved an accuracy of 91.82%, a precision 

of 92.28%, a recall of 91.12%, and an F1-score of 

91.76%. Finally, the proposed CASANet-SBOA 

classifier achieved an accuracy of 94.17%, with a 

precision of 94.28%, a recall of 93.76%, and an F1-score 

of 93.93%. 

In Table 5, a comparative analysis of the 

proposed model on the PAMAP2 dataset is presented. 

The SVM [20, 22] classifier achieved an accuracy of 

88.00%, a recall of 90.90%, a precision of 87.65%, and 

an F1-score of 89.99%. The MLP [20] classifier achieved 

an accuracy of 89.57%, a recall of 91.70%, a precision 

of 89.66%, and an F1-score of 90.65%. The DAFU [17] 

classifier achieved an accuracy of 87.00%, a recall of 

93.91%, a precision of 90.45%, and an F1-score of 

91.65%. The BiLSTM [18] classifier achieved an 

accuracy of 89.90%, a recall of 95.14%, a precision of 

92.47%, and an F1-score of 92.23%. The STMAE [19] 

classifier attained an accuracy of 92.50%, a recall of 

96.40%, and a precision of 94.50%. The SVDD [21] 

classifier achieved an accuracy of 94.50%, a recall of 

97.40%, a precision of 95.10%, and an F1-score of 

94.30%. Finally, the proposed CASANet-SBOA 

classifier achieved an accuracy of 96.17%, with a recall 

of 99.28%, a precision of 98.76%, and an F1-score of 

98.93%. 

 

4.2. Discussion 

Support Vector Machine (SVM) [20, 22] has 

shown effectiveness in HAR tasks with well-separated 

data due to its ability to handle linearly separable data. 

Similarly, Multilayer Perceptron (MLP) [20], known for 

capturing non-linear relationships, has been widely 

applied to HAR with promising results. However, DAFU 

[17], designed to improve HAR precision, struggles with 

ambiguous data, limiting its effectiveness. BiLSTM [18], 

capable of learning long-term dependencies, is highly 

effective in tasks that require temporal analysis of sensor 

data, outperforming traditional LSTM models. STMAE 

[19] enhances HAR by modeling both spatial and 

temporal interdependencies using multi-attention 

mechanisms, achieving state-of-the-art results. SVDD 

[21], focusing on anomaly detection, helps identify 

unusual activities not included in the training set. 
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CASANet, designed specifically for HAR, 

utilizes channel and spatial attention mechanisms to 

capture essential features and correlations in sensor 

data. This makes CASANet particularly effective for 

tasks involving complex spatial-temporal patterns. 

Overall, while general algorithms like SVM and MLP 

perform well, advanced methods such as BiLSTM, 

STMAE, and CASANet demonstrate superior 

performance in HAR, particularly in recognizing intricate 

patterns and correlations in sensor data. 

 

5. Conclusion and Future Work 

In this study, we proposed a novel unsupervised 

deep learning framework for human activity recognition 

(HAR) that integrates CASANet with the Secretary Bird 

Optimization Algorithm (SBOA). Our approach 

demonstrated significant improvements in accuracy, 

robustness, and efficiency, as evidenced by an average 

F1 score of 98% on both the Mhealth and PAMAP2 

datasets, representing a 2-4% improvement over 

existing methods. CASANet’s attention mechanisms 

enhanced robustness to sensor noise and variability, 

improving recognition performance by approximately 5% 

in noisy conditions. Furthermore, the SBOA optimizer 

accelerated the convergence process, reducing training 

time by 15-20% compared to Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA), while 

also lowering memory usage by 10%, making it more 

suitable for resource-constrained environments. These 

quantitative improvements affirm the effectiveness of our 

method for real-world HAR applications, providing a 

valuable contribution to the field. 

For future work, we aim to explore the 

integration of other advanced attention mechanisms and 

optimization techniques to further enhance the 

robustness and efficiency of our HAR model. We plan to 

extend the model to accommodate more complex 

activities and multi-sensor fusion, which will improve its 

performance in diverse real-world scenarios. 

Additionally, we will investigate the deployment of our 

framework on edge devices, optimizing it for real-time 

activity recognition with minimal computational 

overhead. Finally, we intend to explore the 

personalization of activity recognition models to account 

for individual differences in user behavior and sensor 

usage. 
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