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ABSTRACT 

Discharge prediction methods play crucial role in providing early warnings and helping local 

people and government agencies to prepare well before flood or managing available water for 

various purposes. The ability to predict future river flows helps people anticipate and plan for 

upcoming flooding, preventing deaths and decreasing property destruction. Different hydrological 

models supporting these predictions have different characteristics, driven by available data and the 

research area. This study applied two different types of Machine learning techniques to the 

Tikarpara station present in the lower end of the Mahanadi river basin India. The two Machine 

learning techniques include Multi-layer perception (MLP) and support vector regression (SVR) 

MLP has shown great deal of accuracy as compared to SVR across the cases used in the study; 

based on available data and the study area, MLP showed the best applicability, compared to SVR 

techniques. MLP out performed SVR model with r2 = 0.75 and lowest RMSE = 0.58.MLP can be 

used as a promising tool for forecasting monthly discharge at the selected station.  
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Article Highlights 

• Two Machine learning models are applied for monthly river flow forecasting  

• MLP utilizes a supervised learning technique called backpropagation for training 

• One month ahead forecasting of monthly discharge can be suitable done with the help of developed MLP 

model.  

 

INTRODUCTION  

 Forecasting hydrological time series is an important issue in operational hydrology. 

Forecasting discharge (Q) plays a crucial role in many water resources management practices. 

Numerous data‐driven modeling techniques were proposed for the forecast and simulation of the 

stream flow series in past few years [1]. Throughout the literature, traditional and machine 

learning models have been applied to this task. Some of the traditional techniques for hydrological 

time series forecasting includes autoregressive (AR), autoregressive moving average (ARMA), 

autoregressive integrated moving average (ARIMA), and seasonal ARIMA (SARIMA). These 
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models are made a great success in stream flow forecasting [2, 3] with an assumption that a time 

series is originated from a stochastic process with an infinite number of degrees of freedom. With 

increase in computational capability the use of data driven machine learning models increases in 

the last decades by various researchers across the globe.  

The scope of this study is to compare two forecast models, Multilayer Perception (MLP) and 

Support Vector Regression (SVR) and develop an optimal model for monthly stream flow 

prediction. This paper is organized in the following manner. Section 2 presents the stream flow 

data used in this study and study area description. Section 3 first describes the Methodology of 

MLP and SVR. The implementation and development of the forecast models, including data 

preparation and selection of parameters, is discussed in Section 4. Forecast results are described in 

Section 5 and conclusions of the study are presented in Section 6. 

 

2. STUDY AREA AND DATA COLLECTION 

 The daily stream flow data were collected from central water commission India for the 

station of Tikarpara located in the end stream of the river. The monthly stream flow series 

spanned from June 1972to May 2007 is used in this study which is derived from the daily stream 

flow data. Figure 1 shows the selected gauging station over the Mahanadi river basin. Figure 2 

shows the monthly discharge time series 

 

3. METHODOLOGY 

3.1 Multilayer Perceptron (MLP) 

 MLP is one of the most widely used machine learning algorithm for discharge prediction 

in river. A MLP is a feed forward artificial neural network that generates a set of outputs from a 

set of inputs. An MLP is characterized by several layers of input nodes connected as a directed 

graph between the input and output layers. MLP uses back propagation for training the network.  

A MLP having a single hidden layer, with 4 input and 1 output node shown is shown in Fig.3. 

(Source: http://www.india-wris.nrsc.gov.in/wrpinfo/images/5/53/Mahanadi_basin.png) 

http://www.india-wris.nrsc.gov.in/wrpinfo/images/5/53/Mahanadi_basin.png
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Each input unit of the training data set is passed through the network from the input layer 

to output layer. The network output is compared with the desired target output and output error 

(E) is computed using Eq. (1). This error is propagated backward through the network to each 

neuron, and the connection weights are adjusted based on Eq. (1). 

 

 

 Where the observed rainfall for ith is sample and  is the predicted discharge for ith 

sample. 

 

3.2 Support Vector Regression 

SVR a robust and efficient algorithm developed by Vapnik [4] based on Statistical 

learning theory. It became more popular due to its successful application in classification [5, 6] 

and regression tasks to get minimum regression error [6] .The support vector regression (SVR) 

technique, instead, aims at finding the simplest function that can fit all the data while minimizing 

the sum of prediction errors above a predefined threshold. A review of the concepts and 

characteristics of these techniques with specific reference to hydrology is provided by [7, 8]. 

For a given training data with N number of samples, represented by 

where  is an input vector and  is a corresponding output value, SVM 

estimator ( ) on regression can be represented by: 
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                 (2) 

Where  is a weight vector,  is a bias, ‘‘ ’’ denotes the dot product and  is a non-linear 

mapping function. A smaller value of w indicates the flatness of equation ( ), which can be 

obtained using minimizing the Euclidean norm as defined by .Vapnik (1998) introduced the 

following convex optimization problem with the  -insensitive loss function can be defined as 

follows. 

( ) 0=yL     For  
( ) − yxf

 

Otherwise ( )=yL ( ) yxf −
-             (3) 

Eq. (3) defines a tube which is represented by   in (Fig.4). The forecasted value has no 

loss when all the forecasted value within the tube ( )  otherwise forecasted loss is estimated by 

modulus of their deviation (forecast value -actual value) minus epsilon ( ) . 

This nonlinear regression problem can be expressed as in (Fig.4) that shows the 

generalized concept of SVR corresponding to Eq. (7) 
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samples outside the ε-insensitive zone, the distance from the training data from where the errors 
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 is the independent variable. 

Hence the dual form of nonlinear of SVR can be formulated as using the kernel trick is 

expressed as follow  
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Where 


ii  , Lagrange multipliers variables constraints which lead to the construction of 

the dual optimization problem. 

 

4. MODEL DEVELOPMENTS 

4.1Input variable selection for forecasting and model development: 

 In hydrological time series forecasting models that compute the output from input 

(predictor) based on historical records which commonly uses the combination of different time lag 

[9,10] of the variable as an input parameter. For constructing these AI models, there exists no 

certain universally accepted guideline [11, 9].However the combination of different time lag seen 

as a common procedure reported by different researchers [9-12] in time series forecasting. The 

focus of the study is to predicting discharges i.e. the monthly flow using different time lags values 

to build up a model of the following form: 

           
( )mBfmA =

                                  (8) 

 Where 
mB is an m-dimensional input vector consisting of variables mbibb  ,1 , and 

mA is 
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The output variable, consisting of the subsequent variables of interest maiaa  ,1 . 

 We conducted Augmented Dickey–Fuller (ADF) test to make the time series stationary. 

The ADF test concluded that a lag of 7 is suitable for making the time series stationary. Thereafter 

we used up to lag 7 to predict the next month discharge in the selected station. The analysis 

carried out with 7 time lag of the low flow in the input vector, to build MLP and SVR model is 

built (Table1). 

 

 

 

 

 

 

 

5. RESULTS AND DISCUSSION 

 The creditableness of MLP model for forecasting monthly Q  for the selected station over 

Mahanadi river basin, India is examined as a case study, where the models used the different lag 

of Q  time series data. To assess the predictability of the MLP model, a comprehensive 

comparison with SVR models is performed using the several statistical metrics of forecasted and 

observed values of Q .Figure.5 (a), (b) shows a scatterplot of forecasted discharge versus the 

observed discharge value for the data analyzed in the testing period from MLP and SVR models 

 

5.1 Performance Assessment 

 The performance of the MLP and SVR model was assessed by the comparison of the 

observed Q  and the forecasted Q  in the training and testing period using 

1. Nash-Sutcliffe coefficient (ENS): 
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2. Coefficient of determination (
2r ) 
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3. Root-mean-square error (RMSE): 
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 Where = observed discharge; = forecasted discharge; = average observed discharge; = 

average forecasted discharge; N = number of data points (75% for training and 25% for testing of 

the data). 

 

 

 

 
Table 2. shows various error calculated during testing period 

Table 1. MLP & SVR models used in the course of the analysis with the corresponding predictor 

variable as input 
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 MLP SVR 

r2 0.75 0.62 

RMSE  0.58 0.74 

MAE 0.36 0.52 

ENS 0.68 0.54 

 
6. CONCLUSIONS 

 Mahanadi river basin has many water resources. Water resource fluctuations due to 

climate change make integrated water management vital. This study used data from Tikarpara, 

one of the gauging stations, to better understand river discharge projections in Mahanadi river 

basin. Accurate river flow forecasts are a vital component of sustainable water management. The 

purpose of this study attempts to determine a relative optimal forecast model for monthly stream 

flow data. Two methods namely MLP and the SVR, were employed. Model performance was 

assessed using coefficient of determination (r2), Root mean square error (RMSE), Mean Absolute 

Error (MAE) and the Nash Sutcliffe model efficiency coefficient (ENS). MLP out performed SVR 

model with r2 = 0.75 and lowest RMSE = 0.58. In conclusion, MLP’s can be used to predict river 

flows by using the historical flow data. 
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