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Abstract: Ensuring the quality and optimizing the tool in Friction Stir Welding (FSW) process is quite complex and 

the solution relies on implementing Condition Monitoring. The major impact of this process yields good quality welds 

and cuts down the non-operational timing and cost. Condition Monitoring is the key to find a solution to the challenging 

problem of ensuring quality and optimizing the tool in the FSW process. The creation of a graphical user interface 

(GUI) and the development and comparison of several models, including Decision Tree (DT), Random Forest (RF), 

Light Gradient Boosted Machine (LGBM), and Extreme Gradient Boosting (XGBoost), are the main objectives of this 

study. By offering an uniform interface for tracking and evaluating tool condition data, GUI can make it easier for 

operators and the maintenance crew to collaborate. Vibration analysis is the first step in tool condition monitoring. 

Al5083 and AZ31B are used as the workpiece and H13 as the tool in this investigation. The signals are obtained from 

the experimental setup via DAQ, and LabView processes them. A Python script converts the raw signals into 

statistical data. Following that, the data was loaded into ML models and optimized using Optuna. TKinter has been 

used to create the GUI. For prediction, the best models were included in the GUI. By the deployed models, LGBM 

generates 96% for 1000 rpm, 96.55% for 1200 rpm, and 95.90% for 1400 rpm for Al5083 93.22% for 1000 rpm, 

99.29% for 1200 rpm, and 91.50% for 1000 rpm for AZ31B. For real-time prediction, these models are thus connected 

to a graphical user interface. In each case, the LGBM classifier topped the others. This work served as an initial basis 

for the creation of a semi-onboard diagnostic approach that requires minimal human input.  

Keywords: Friction Stir Welding, Tool Condition Monitoring, Machine Learning, Feature Extraction, Feature 

Selection, Feature Classification, GUI 

 

1. Introduction 

The FSW technique uses the frictional heat 

created by the rotating and plunging tool going through 

the workpiece to combine two workpieces without 

melting the material. It is a solid-state joining method that 

is safe for the environment and does not emit fumes.  A 

tool with a round, flat shoulder and a smaller probe 

extending from its centre is used in FSW [1]. FSW as a 

solid-state manufacturing process shows the good ability 

to fabricate high strength joints in comparison with 

conventional fusion welding techniques Figure 1 and 

Figure 2 below show the friction stir welding process and 

its four stages [2, 3].  The behaviour of material flow in 

FSW has been the subject of numerous studies. It may 

be difficult for the material to move around the pin due to 

the intricate geometry of the tools. During the welding 

process, the work piece is heated to high temperatures, 

which causes significant plastic deformation and the 

creation of finely recrystallized equiaxed grains. Due to 

its fine microstructure, energy economy, versatility, and 

lack of flux or filler material usage, friction stir welding 

has recently been lauded as a ground-breaking method 

for fusing metals and is thought to be ecologically 

harmless [4].  Al and magnesium are often used work 

pieces in FSW because of their numerous uses in the 

commercial, industrial, automotive, and aerospace 

sectors. In contemporary shipbuilding, railroad 

construction, and aerospace welding applications, FSW 

is widely utilized [5]. There are several reasons why 

improper welding can happen in FSW, including 

insufficient or excessive heat input, incorrect pressure 

under the shoulder, abnormal string, or improper 

placement of welding materials [6].Studies on tool 

configuration in FSW are of great importance because 

they are closely related to the nature of the resulting 

friction and the amount of heat generated by it [7]. 

Utilizing condition monitoring, which enables early 

detection and prediction of potential problems, defects 

are prevented from developing and these factors are 

monitored.  
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The machine parameters and multiple faults on 

the welds in FSW are caused by the bad state of the tool. 

Installing condition monitoring systems is advised as a 

solution to all of these issues.  Under condition 

monitoring (CM), specific machinery conditions 

(temperatures, noise levels, etc.) are continuously 

monitored for any changes that might portend the 

beginning of a potential malfunction [8]. Condition 

monitoring makes it feasible to plan maintenance tasks 

and take preventative action against future malfunctions 

and unplanned downtime.  Nowadays, automated 

machine tools are a need for any smart manufacturing 

system. These machines' failures could result in 

significant production delays and financial losses for the 

business. Condition monitoring is used to lower machine 

downtime, save maintenance time, and increase 

productivity to avoid such situations [9]. Tool Condition 

Monitoring (TCM) is a monitoring strategy that uses 

machine learning models to forecast data and track the 

health of tools, work pieces, and machines, as well as 

sensors to gather data and condition signals using DAQ 

[10]. There are several types of TCM techniques: 

Temperature monitoring, Vibration Monitoring, Acoustic 

Emission monitoring, Sensor Fusion techniques, and so 

on. Here vibration analysis is considered. The process 

of monitoring vibration levels as well as patterns within a 

piece of equipment, or machinery to identify unusual 

vibration activities and assess the general state of the 

test object is known as vibration analysis. There are 

more methods to analyse a vibration which include Wave 

analysis, Kurtosis measurement, Signal averaging, Time 

Domain analysis, Fast Fourier Transform, Statistical 

Analysis, and Histogram analysis. In this study Statistical 

method data is fed to an ML algorithm to find out the 

vibrational pattern. The machine learning model is 

critical in predicting the health conditions of the tools, 

work pieces, and machines, thereby enabling proactive 

maintenance and avoiding breakdowns.  Through the 

continuous monitoring of a machine's operational 

parameters, it is possible to predict when repairs will be 

necessary before the equipment begins to decline or 

break down. Condition Based Maintenance (CBM) 

differs from traditional preventive maintenance practices 

in that it centres around the real-time condition of the 

machine [11].  Machine Learning (ML) is a field of study 

in Artificial Intelligence (AI) that involves the 

development of algorithms and models that enable 

computers to learn from data without being explicitly 

programmed.  ML models are trained on datasets that 

contain examples of input data along with their 

corresponding output values. By analyzing the patterns 

and relationships in the data, the models can learn to 

make predictions or classifications on new, unseen data 

[12].  There are several types of machine learning 

algorithms, including supervised learning, unsupervised 

learning, and reinforcement learning. In supervised 

learning, the model is trained on labelled data, where the 

correct output values are provided. In unsupervised 

learning, the model is trained on unlabelled data and 

must identify patterns and relationships on its own. 

Reinforcement learning involves training a model 

through trial and error based on rewards or punishments 

[13].  ML has numerous applications in various fields, 

including image and speech recognition, natural 

language processing, recommendation systems, and 

predictive analytics. Previous studies have utilized 

machine learning (ML) models to forecast various 

properties such as fracture strength, elongation 

percentage, ultimate tensile strength, and microstructure 

properties like grain size in Friction Stir Welding (FSW) 

machines [14]. Recent studies have also been focused 

on optimizing algorithms to predict the condition of FSW 

using various classifiers [15].  In this study, an optimized 

algorithm and GUI have been developed, which can 

facilitate a semi-onboard diagnostic model to predict the 

tool condition of FSW with greater accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Methodology 

 Vibration condition monitoring signals are 

analyzed and fed to an ML algorithm for categorization 

as the first step in developing a GUI for determining the 

Figure 1. FSW process 

Figure 2. Four stages of FSW 
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actual state of an FSW tool. Vibration analysis is the 

process of tracking vibration levels and examining trends 

in vibration data. It is highly recommended for use in 

practical applications, especially in our study (Friction 

Stir Welding). H13 tool steel was used for the entire test 

process, which involved nonferrous metals like 

magnesium and aluminium alloy. The experimentation 

for the prediction of tool health condition monitoring 

benefited from the use of a healthy friction stir welding 

apparatus. Digital signal processing is the primary 

component of machine condition monitoring systems. In 

which the signal from the vibrating component was 

captured by a sensor called a piezoelectric transducer. 

An ADC and NI's 4-channel DAQ device can be used to 

convert an acoustic vibration signal into a digital signal. 

LabVIEW is a signal processing tool that stores signals 

as digital data. The machine learning components of 

feature extraction, feature selection, and feature 

classification. A raw vibration signal needs to have any 

unknown characteristics extracted from it. Computer 

programs are used to extract features. When selecting 

features, the most important factors for classification 

should be considered. A method for analyzing tool 

vibration under particular tool and process conditions is 

feature categorization. After Categorizing features into 

important 6 and 12 Features, data is fed into the ML 

algorithm. To attain the final motto of study, GUI is 

developed. The main scope of GUI is to interpret the 

data to users in an easy way. In our study, GUI shows 

what fault has occurred in the machine. Better Accurate 

Model needs to be kept in GUI.   Figure 3 shows the 

workflow of the project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Workflow of the Process 
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2. Experimental Setup 

A friction stir welding equipment that was 

completely pressurized, hydraulically automated, and in 

good health was used to conduct the entire set of trials. 

To do tests, a PLC-controlled friction stir welding 

machine as shown in Figure 4(a) was hired.  The work 

pieces were aluminium alloy (5083) and magnesium 

alloy (AZ31B) which were each 25 mm x 25 mm x 5mm 

and 25 mm x 25 mm x 8 mm in size.  The joints were 

built using single-pass welding. Throughout the entire 

experiment, a feed rate of 30 mm/min, threaded 

cylindrical pin profiled, non-consumable H13 tool steel 

with a 5.75 mm depth pin, and varying spindle speeds of 

1000, 1200, and 1400 rpm were used.  

A tool picture is shown in Figure 4(b).  A 

piezoelectric accelerometer (Dytron Make, 500 g, 10.26 

mV/g sensitivity) was attached to the tool head to record 

the raw vibration signals.  The signal from the tool head 

was obtained using a wireless 4-channel DAQ (Data 

Acquisition) device (NI 9234, 51.2 k Samples/sec) (a&b), 

as shown in Figure 4(c).  Using the graphical NI 

LabVIEW application and the cDAQ chassis NI9191 

data collection system, the vibration signal was digitally 

recorded.  The DAQ module converts the analog signals 

from the sensor into digital signals to aid in decision-

making. The vibration was recorded using NI LabVIEW, 

a visual program. 

The vibration data for the investigation were 

taken under five different conditions: Good, Air gap, 

Misalignment, One side lift, and Notch. These conditions 

were taken into account for both work pieces shown in 

Figure 7 & 8. 

 

2.1 Work piece and Tool properties 

Table 1 and 2 depicts the Chemical composition 

of aluminium 5083 and Magnesium AZ31B respectively. 

The mechanical properties of the aluminium and 

magnesium work pieces are tabulated in Table 3 and 4 

respectively. Table 5 represents the chemical 

composition of the H13 tool [5, 6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4a. FSW Setup 

 

Figure 4b. FSW Tool Figure 4c. DAQ Setup 

Figure 5. Time Domain Signals for Aluminium 5083 
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Table 2. Chemical composition of Magnesium AZ31B 

Element Magnesi

um, Mg 

Aluminu

m, Al 

Zinc, Zn Mangan

ese, Mn 

Silicon, 

Si 

Copper, 

Cu 

Calcium, 

Ca 

Iron, 

Fe 

Nickel, 

Ni 

Content 

(%) 

97 2.50- 3.50 0.60–1.40 0.20 0.1 0.05 0.04 0.005 0.005 

 

Table 3. Mechanical properties of aluminium 5083 (0.2 - 6.3mm Thick) 

Property Hardness Brinell Proof Stress Tensile Strength 

Value 75 HB 125 Min Mpa 275 – 350 Mpa 

 

Table 4. Mechanical properties of magnesium AZ31B 

Properties Tensile strength Yield strength  Compressive yield strength  Hardness, Brinell  

value 260 MPa 200 MPa 97 MPa 49 

 

Table 5. Chemical composition of H13 tool steel 

Element Content (%) 

Chromium, Cr 4.75-5.50 

Molybdenum, Mo 1.10-1.75 

Silicon, Si 0.80-1.20 

Vanadium, V 0.80-1.20 

Carbon, C 0.32-0.45 

Nickel, Ni 0.3 

Copper, Cu 0.25 

Manganese, Mn 0.20-0.50 

Table 1. Chemical composition of aluminum 5083 

Elements Mg Fe Si Cu Mn Zn Ti Cr Al 

% Present 4.0-4.9 0.4 0.4 0.1 0.4-1.0 0.25 0.15 0.05-0.25 Balance 

Figure 6. Time Domain Signals for Magnesium AZ31B 
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2.2 Fault condition Description 

In general, issues arise when proper machine 

specifications are not followed, which lowers the quality 

of welding. Nevertheless, these flaws have an impact on 

the tools and its useful life. Predictive maintenance and 

planned maintenance were used to extend the tool's life. 

The predictive maintenance tool continuously tracks and 

prevents machine downtime [16]. Five fault conditions 

were examined in this study: good condition, air gap 

between the tool and the work piece, work piece 

misalignment, one-side lifting of base metals, and work 

piece notch. When the tool and work piece are 

positioned correctly in their fixtures and all input 

parameters are perfectly distributed, the condition is 

considered good. The vibration signal from the tool was 

captured and examined for these circumstances. 

Another significant problem affecting the tool's life is the 

air gap between the tool and the work piece. A low-

quality work piece is produced when there is a gap 

between the tool and the work piece, and the joint quality 

also affects how well the continuous process breaks 

down. When estimating tool life, misalignment of the 

work piece is another factor to take into account. The 

space between two work pieces permits the tool to spin 

freely without influencing the mixing of the substances. 

This will lead to occasionally poorer quality or even no 

joint formation. One side lift in the work piece is another 

important fault scenario that needs to be avoided to 

prevent machine downtime. 

 

3. Feature Extraction and Feature Selection 

For our analytics to reveal actionable data, it is 

imperative to understand the difference between 

compelling and useful data. With more data than ever 

before, we have a wide range of test cases in our study. 

The two most important parts of machine learning are 

"feature extraction" and "feature selection". Ripping 

parametric information from unprocessed vibration 

signals is called feature extraction. Wavelets, statistics 

and histograms can all be produced from raw vibration, 

among other features [17-19].  

This work focused mostly on fault forecasting 

when it came to statistical characteristics. Count, RMS, 

standard error, mode, maximum, minimum, range, 

count, kurtosis, median, sum, skewness, and standard 

deviation are the statistical features that can be obtained 

from the signal [20]. For extraction of features Python 

script is developed. As a consequence, the next 

approach in distinguishing the remarkable qualities from 

the set of features is feature selection. Features with little 

or no content should be removed from the cluster. 

Feature selection can considerably increase the 

understand ability of creating classifier models, resulting 

in a model that is more generalizable to hidden places 

[21]. We will check 6 important features using the feature 

score gathered from the classifier, which will reduce 

computational complexity and time. The statistical 

feature extraction code is shown in Figure 7. 

 

4. Feature Classification 

The following step after feature extraction is 

classification. At this point, constructing an Algorithm for 

the GUI that will forecast the data. The technique for 

categorizing is carried out by training and testing the 

data collected. A model is used to train the data [22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7. Feature extraction code in python using pandas and numpy 
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Based on the training, the model is tested with 

untrained data. This is the method employed in machine 

learning. For this study supervised machine learning has 

been implemented [23]. To be specific, a tree-based 

algorithm has been implemented since it is a very 

accurate and stable model while handling tabular data.  

Tree-based algorithms like Decision Tree (DT) [24], 

Random Forest (RF) [25], XGBoost (XGB) [26], Light 

Gradient Boosted Machine (LGBM) [27]. These models 

are created using Python in jupyter notebook and it is 

shown in Figure 10.  

 

 

 

The five conditions of the FSW have been 

labelled as 0, 1, 2, 3, 4 and it has been represented in 

Figure 9 that 80% of data has been allocated for training 

and the remaining 20% has been used for testing. As 

mentioned in feature extraction, first the model has been 

trained with 12 features, and then by using feature 

correlation, the 6 features which have a higher 

correlation with the label feature, are taken. Figure 10 

represents the feature correlation for Aluminium-

1000RPM 

Figure 8. Decision tree algorithm developed in python using jupyter notebook 

Figure 9. Label for different conditions 

Figure 10. Feature correlation for Aluminium-1000 RPM 
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5. Graphical User Interface 

 The graphical user interface (GUI) replaces text-

based UIs, written command labels, and text navigation, 

enabling users to interact with electronic devices using 

graphical icons and auditory indicators like main 

notation. It is commonly believed that command-line 

interfaces (CLIs), which necessitate users to input 

commands using a keyboard, have a difficult learning 

curve [28]. Multiple GUI development options are 

available in Python (Graphical User Interface). Tkinter is 

the most widely used GUI technique out of all the others. 

The Tk GUI toolkit that comes with Python has a normal 

Python interface. The quickest and simplest method for 

developing GUI apps is using Python with Tkinter. Using 

Tkinter to build a GUI is simple.   Using Tkinter, the GUI 

was created from the ground up for this investigation. 

This graphical user interface (GUI) can be used to 

extract statistical features from the raw data and predict 

the state of the FSW. The GUI development code is 

shown in Figure 11 and Figure 12 represents the GUI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Results and Discussion 

Machine learning techniques such as Decision 

Tree, Random Forest, Light Gradient Boosted (LGBM), 

and Extreme Gradient Boosted (XGB) Machine 

Classifiers are employed to detect flaws in the friction stir 

welding equipment. Once again, the mis predicted 

values and common values are removed, and statistical 

features are taken from the raw data and fed into the 

machine learning model. A ML model is then created and 

used. to minimize features to decrease prediction time 

and computation complexity. To achieve this, the 

correlation of other variables with labels is noted, and the 

best features are used for prediction. The Accuracy 

tables of different rpm and Confusion matrices are given 

below. 

 

6.1. Accuracy table 

6.1.1 before pruning 

For Al5083 

● At 1000 rpm Decision Tree performs better than 

other algorithms with 87.02% accuracy. 

● For 1000 rpm, the best 6 features to predict the 

condition of material are 'Mean', 'Kurtosis', 

'Median', 'Sum', 'Max', 'Range'. 

● With these 6 features, LGBM performs better 

with 89.62% accuracy. 

● At 1200 rpm Decision Tree performs better than 

other algorithms with 84.78% accuracy. 

● For 1200 rpm, the best 6 features to predict the 

condition of material are 'Mean',  'Standard 

Deviation', 'Variance', 'Median', 'Sum', 'RMS'.   

● With these 6 features, Decision Tree performs 

better with 85.50% accuracy. 

● At 1400 rpm LGBM performs better than other 

algorithms with 89.76% accuracy. 
Figure 11. GUI code 

Figure 12. GUI 
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● For 1400 rpm, the best 6 features to predict the 

condition of material are 'Mean',  'Standard 

Deviation', 'Sum', 'Range' , 'RMS', 'Standard 

Error'. 

● With these 6 features, LGBM performs better 

with 86.61% accuracy. 

 

For AZ31B 

● At 1000 rpm LGBM and XGBoost performs 

better than other algorithms with 86.4% 

accuracy. 

● For 1000 rpm, the best 6 features to predict the 

condition of material are 'Mean', 'Standard 

Deviation', 'Variance', 'Skewness', 'Range' , 

'RMS'. 

● With these 6 features, LGBM performs better 

with 83.7% accuracy. 

● At 1200 rpm LGBM and XGBoost performs 

better than other algorithms with 90.25% 

accuracy. 

● For 1200 rpm, the best 6 features to predict the 

condition of material are 'Standard Deviation',  

'Max', 'Min', 'Range' , 'RMS', 'Standard Error'. 

● With these 6 features, LGBM and XGBoost 

performs better with 92.42% accuracy. 

● At 1400 rpm LGBM performs better than other 

algorithms with 83.80% accuracy. 

● For 1400 rpm, the best 6 features to predict the 

condition of material are 'Standard Deviation',  

'Variance', 'Max', 'Range' , 'RMS', 'Standard 

Error'. 

● With these 6 features, LGBM performs better 

with 87.96% accuracy. 

 

6.1.2 after pruning 

For Al5083: 

● At 1000 rpm LGBM performs better than other 

algorithms with 96% accuracy. 

● For 1000 rpm, the best 6 features to predict the 

condition of material are 'Mean', 'Kurtosis', 

'Median', 'Sum', 'Max', 'Range'. 

● With these 6 features, XGBoost performs better 

with 94.11% accuracy. 

● At 1200 rpm LGBM performs better than other 

algorithms with 96.55% accuracy. 

● For 1200 rpm, the best 6 features to predict the 

condition of material are 'Mean',  'Standard 

Deviation', 'Variance', 'Median', 'Sum', 'RMS'.   

● With these 6 features, LGBM performs better 

with 94.82% accuracy. 

● At 1400 rpm LGBM and XGBoost performs 

better than other algorithms with 95.90% 

accuracy. 

● For 1400 rpm, the best 6 features to predict the 

condition of material are 'Mean',  'Standard 

Deviation', 'Sum', 'Range' , 'RMS', 'Standard 

Error'. 

● With these 6 features, Random Forest performs 

better with 95.08% accuracy. 

 

For AZ31B 

● At 1000 rpm LGBM performs better than other 

algorithms with 93.22% accuracy. 

● For 1000 rpm, the best 6 features to predict the 

condition of material are 'Mean', 'Standard 

Deviation', 'Variance', 'Skewness', 'Range' , 

'RMS'. 

● With these 6 features, LGBM and XGBoost 

perform better with 91.3% accuracy. 

● At 1200 rpm LGBM performs better than other 

algorithms with 99.29% accuracy. 

● For 1200 rpm, the best 6 features to predict the 

condition of material are 'Standard Deviation',  

'Max', 'Min', 'Range' , 'RMS', 'Standard Error'. 

● With these 6 features, Decision Tree performs 

better with 92.19% accuracy. 

● At 1400 rpm LGBM and XGBoost performs 

better than other algorithms with 91.50% 

accuracy. 

● For 1400 rpm, the best 6 features to predict the 

condition of material are 'Standard Deviation',  

'Variance', 'Max', 'Range' , 'RMS', 'Standard 

Error'. 

● With these 6 features, LGBM performs better 

with 96.90% accuracy. 

 

6.2. Confusion Matrix 

A confusion matrix is a table used to evaluate 

the performance of a classification model. It compares 

the actual values of a set of data with the predicted 

values produced by a machine learning algorithm.  The 

confusion matrix is a fundamental tool in machine 

learning [29], and it is widely used in many applications, 

including computer vision, natural language processing, 

and fraud detection. The basic structure of a confusion 

matrix includes four different metrics: true positives (TP), 

false positives (FP), true negatives (TN), and false 

negatives (FN). These metrics are used to calculate 

various performance measures, such as accuracy, 

precision, recall, and F1 score.  The following Figure 

13a, b, c, d, e, f to represents the confusion matrix of 

LGBM at different rpm. 
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Table 6. Accuracy table: 1000 rpm 

Material Aluminium Magnesium 

Model 12 Features 6 Features 12 Features 6 Features 

LGBM 86.25 89.62 86.4 83.7 

XGboost 84.73 88.67 86.4 82.11 

Decision Tree 87.02 83.01 80.80 82.11 

Random Forest 84.73 85.84 83.2 81.3 

 

Table 7. Accuracy table: 1200 rpm 

Material Aluminium Magnesium 

Model 12 Features 6 Features 12 Features 6 Features 

LGBM 83.33 82.60 90.25 92.42 

XGboost 81.15 82.60 90.25 92.42 

Decision Tree 84.78 85.50 85.71 90.15 

Random Forest 80.43 81.88 89.6 90.90 

 

Table 8. Accuracy table: 1400 rpm 

Material Aluminium Magnesium 

Model 12 Features 6 Features 12 Features 6 Features 

LGBM 89.76 86.61 83.8 87.96 

XGboost 85.82 85.82 80.1 83.33 

Decision Tree 88.18 85.82 80.14 81.48 

Random Forest 85.03 85.03 75.7 81.48 

 

Table 9. Accuracy table: 1000 rpm 

Material Aluminium Magnesium 

Model 12 Features 6 Features 12 Features 6 Features 

LGBM 96 93.13 93.22 91.3 

XGboost 95.19 94.11 90.67 91.3 

Decision Tree 89.6 86.2 88.13 88.6 

Random Forest 94.4 89.21 90.6 92.1 
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Figure 13. Confusion matrix of LGBM (a) Al - 1000 rpm, (b) Mg - 1000 rpm, (c) Al - 1200 rpm, 

(d) Mg - 1200 rpm, (e) Al - 1400 rpm, (f) (Mg - 1400 rpm) 
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Table 10. Accuracy table: 1200 rpm 

Material Aluminium Magnesium 

Model 12 Features 6 Features 12 Features 6 Features 

LGBM 96.55 94.82 99.29 90.78 

XGboost 95.68 93.10 98.5 90.07 

Decision Tree 93.10 93 94.32 92.19 

Random Forest 93.96 93.10 97.16 86.5 

 

Table 11. Accuracy table: 1400 rpm 

Material Aluminium Magnesium 

Model 12 Features 6 Features 12 Features 6 Features 

LGBM 95.90 93.44 91.5 96.90 

XGboost 95.90 94.26 86.9 95.87 

Decision Tree 90.98 90.9 86.9 93.81 

Random Forest 93.44 95.08 81.5 90.7 

 

 

 

 

 

Figure 14. GUI for Statistical Feature Prediction 
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6.3. GUI Prediction 

GUIs are widely used in tool condition 

monitoring systems [30] to provide users with an intuitive 

and visual representation of the state of the system.  GUI 

has been developed for the two purposes. By using the 

statistical extraction option [31, 32], features can be 

extracted for the experimental studies.  The condition of 

the machine can be predicted using the prediction 

option. This GUI can used universally for any kind of 

material by changing the trained algorithm in the source 

code. Figure 14 and Figure 15 represent the GUI. 

 

7. Conclusion and Future Scope 

The development and comparison of several 

models, including Decision Tree (DT), Random Forest 

(RF), Light Gradient Boosted Machine (LGBM), and 

Extreme Gradient Boosting (XGBoost) are been used 

and results mentioned, It has been clearly observed that 

the Lgbm classifier performed better in all cases with 12 

features and finest in the 6-feature scenario, LGBM 

generates 96% for 1000 rpm, 96.55% for 1200 rpm, and 

95.90% for 1400 rpm for Al5083 93.22% for 1000 rpm, 

99.29% for 1200 rpm, and 91.50% for 1000 rpm for 

AZ31B which can still be optimized by utilizing parameter 

optimization approaches like hyper parameter tuning 

and search-grid CV. This study leads to the development 

of a semi-automatic system in which a human must 

provide key inputs. This approach can be applied to any 

reciprocating system to predict the machine's health. By 

automating the scripts, an on-board diagnostic tool that 

doesn't require human intervention can be created. The 

potential for creating an ML model that predicts tool 

conditions by utilizing statistical vibration data from tools 

is extremely bright. A model like this could completely 

transform industrial procedures by improving preventive 

maintenance plans, which eliminates the downtime, and 

saves money. This model makes use of the continuous 

stream of vibration data to forecast the remaining tool’s 

life and identify the beginning of degradation and wear 

in the tool, enabling early tool replacement. Additionally, 

ensures that tools are changed only, if necessary, It can 

helps to increase overall productivity and quality of 

products, ultimately promoting sustainability and cost 

savings in manufacturing industries. This technology 

development may continue into other areas, IIoT 

integration, providing even more complete predictive 

maintenance solutions in the future. 
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